

Large scale heat pumps

Integration of multiple heat sources & flexibilisation of DH-systems

LowTEMP training package - OVERVIEW

Introd	luction
	ЮСПОП

Intro Climate Protection Policy and Goals

Intro Energy Supply Systems and LTDH

Energy Supply Systems in Baltic Sea Region

Energy Strategies and Pilot Projects

Methodology of Development of Energy Strategies

Pilot Energy Strategies – Aims and Conditions

Pilot Energy Strategy – Examples

Pilot Testing Measures

CO₂ emission calculation

LCA calculation

Financial Aspects

Life cycle costs of LTDH projects

Economic efficiency and funding gaps

Contracting and payment models

Business models and innovative funding structures

Technical Aspects

Pipe Systems

Combined heat and power (CHP)

Large Scale Solar Thermal

Waste & Surplus Heat

Large Scale Heat Pumps

Power-2-Heat and Power-2-X

Thermal, Solar Ice and PCM Storages

Heat Pump Systems

LT and Floor heating

Tap water production

Ventilation Systems

Best Practice

Best Practice I

Best Practice II

Overview I

- General information
 - heat pump dimensions
 - terminology
 - distinction by temperature level
 - heat pump designs
- **Possible Heat Sources** (air, water, ground & sewage water, geothermal, industrial waste and surplus heat)
- Summarization of different heat sources & usage
- Coefficient of Perfomance indicator

Overview II

- Integration of heat pumps into DH-systems
 - Supply-pipe feed-in
 - return flow temperature increase
- Refrigerants Research & environmental issues
- Economic viability
- General benefits of LHP in DH-systems

- Difference between heat pumps and large heat pumps is yet not clearly defined
- Large heat pumps could be described as...
 - Heat pumps that energetical power and reached temperature level are able to feed a heat network
 - Power and temperature level also depends on the size / heat demand of the heating grid
 - Terminologically will be <u>no distinction</u> between both terms

General information – distinction by temperature level

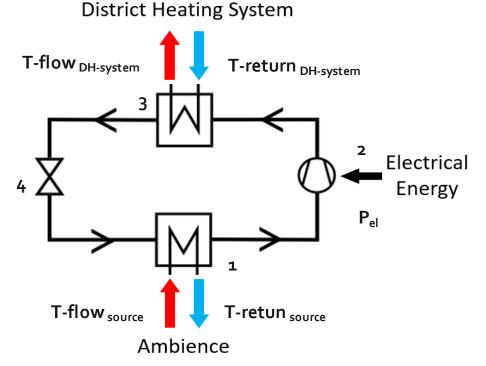
Generally heat pumps can be distinguished or rather described as

- High-temperature heat pumps
- Low-temperature heat pumps
- Both types are used within housing units & the DH-sector
- However, no clear definition or distinction possible!
 - High-temperature heat pumps are usually used within the DH-sector
 - Low-temperature heat pumps in single-family houses & apartment buildings

General information – heat pump designs

- Heat pumps using different natural heat sources
- Heat pumps use heat sources on low temperature levels \rightarrow raising temperature levels

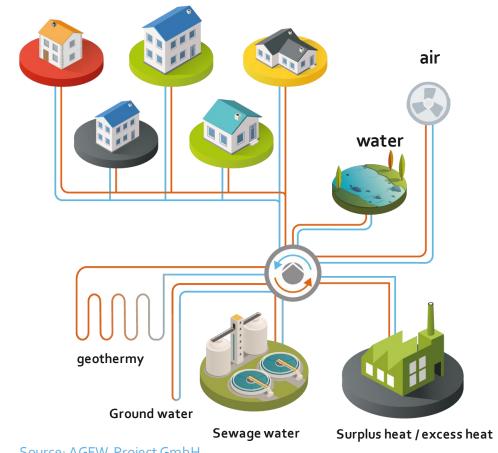
Difference between most common implementations


- Operating energy
- Driving power (electricity, gas / steam, combustion engine)
- Thermical compression / mechanical compression
- Open or closed heat pump circuit

Compression heat pump (electrical)

- Mostly used within the heat sector
- Other heat pump technologies (Adsorption heat pump, absorption heat pump, rotary heat pump)
- 1) evaporation refrigerant
- 2) pressure & temperature increase through compression
- 3) condensation refrigerant & energy transfer
- 4) pressure reduction

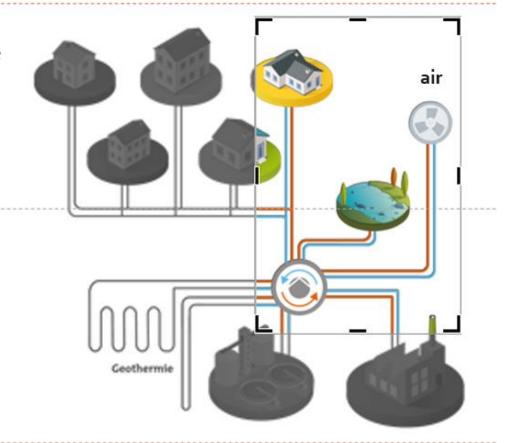
Working principle of compression heat pumps (based on AGFW, 2017)



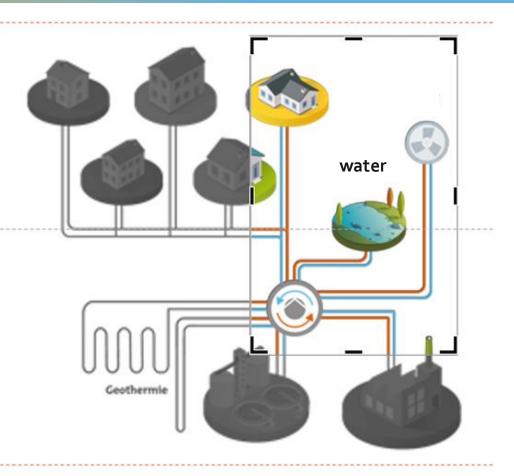
- Heat pumps rely on an existing heat source
- Most important considerations are the high availability on-site and the range of technical exploitation possibilities
 - High source temperature
 - constant availability

 \rightarrow as lower the \triangle T between heat source and heat sink as higer the efficiency of the heat pump

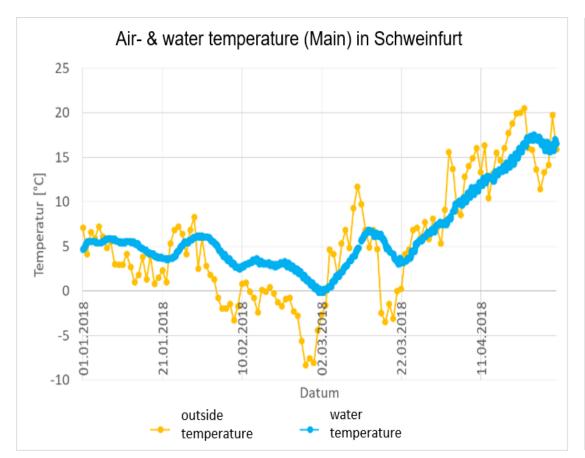
In general, there is a wide range of CO₂-neutral heat sources available!


Source: AGFW-Project GmbH

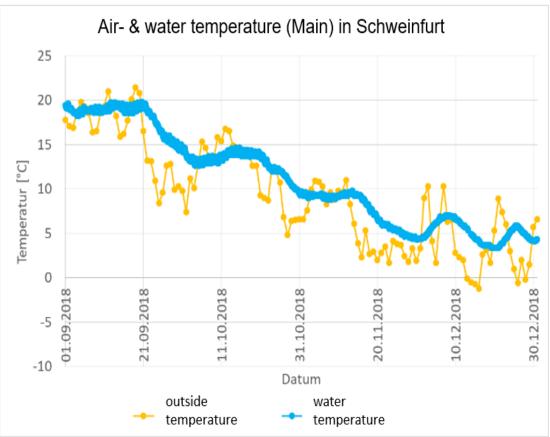
- Operate with ventilators that suck in air > thermal energy is transmitted to a heat exchanger > processed air is led back into the environment
- Unlimited heat source, **but volatile & seasonal dependent**
- Fluctuations caused by weather (daily & seasonal)
- Heat production is opposed to heat demand
 - > Highest COP (Coefficient of Perfomance) in summer
 - < Highest heat demand of DH-systems in winter
 - → heat pumps using air as heat source are usually used for base loads during summer

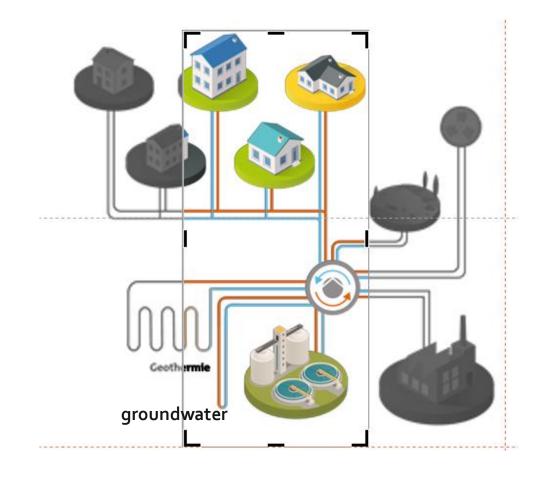


Possible heat sources – river & lake water

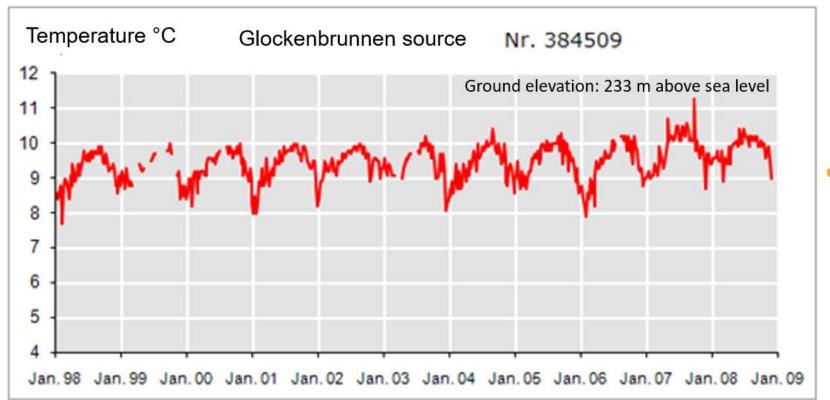

- Flowing waters, lakes are used as heat sources
- Pumps extract a certain amount of water from the heat source > heat is removed and transmitted > water is led back into the source
- **fluctuations** caused by weather and season
 - Less than air due to the higher heat storage capacity of water
 - Water heat sources usually have a higher availability than air heat sources
- Lake water extraction and return is limitied cooling of the heat source is restricted
- Example: For at least heat source temperature of 7° C, different sites in Germany could use river water heat sources for 6.000-6.500 h/a

Possible heat sources - river & lake water



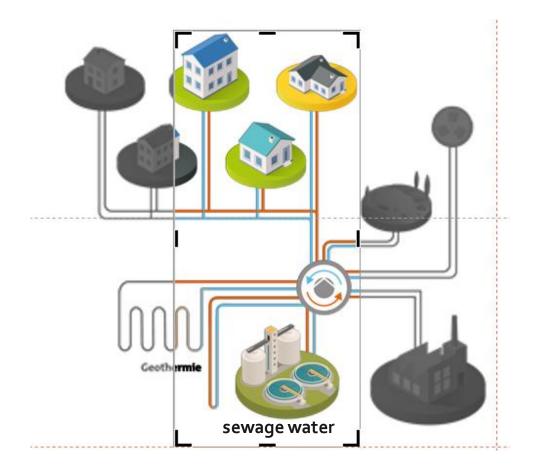

Figure 2 Comparative air and water temperature (of the river Main) in Schweinfurt in 2018 (from 1 January to 30 April and 1 September to 31 December) [Eselshöhe weather station and Bavarian State Office for the Environment]

Possible heat sources – ground water


- Groundwater-heat pumps using the thermal energy of water similar to lake and river-water heat pumps
- Two wells are required (usually between 5-20 m)
 - A feed pump transports the ground water from the withdrawal- or suction well to the heat pump
 - afterwards the processed water is fed back into the soil via an absorption well
- As deeper the groundwater usage as more constant is the heat availability

Possible heat sources – ground water

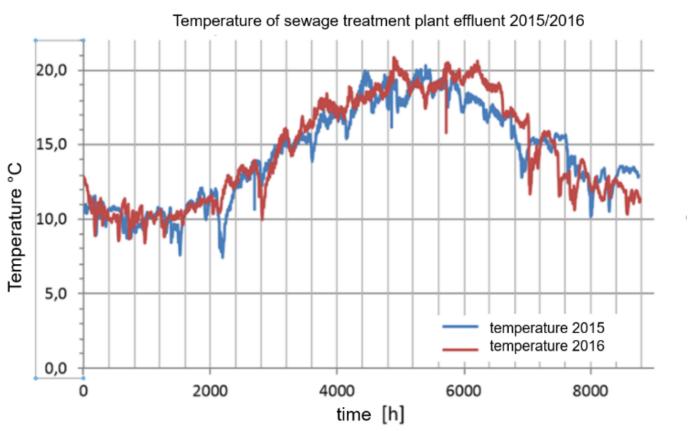
 Between 1998 and 2009 the average temperature fluctuation was in the range of +/- 1 K as the example shows

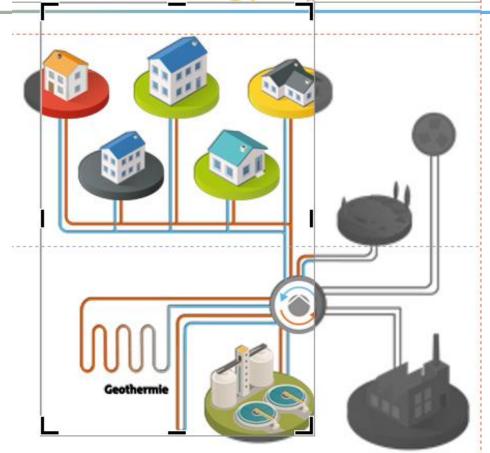

Figure 3 Groundwater temperature between 1998 and 2009 in Bad Soden am Taunus [Hessian State Office for Environment and Geology]

Possible heat sources – sewage & pure water

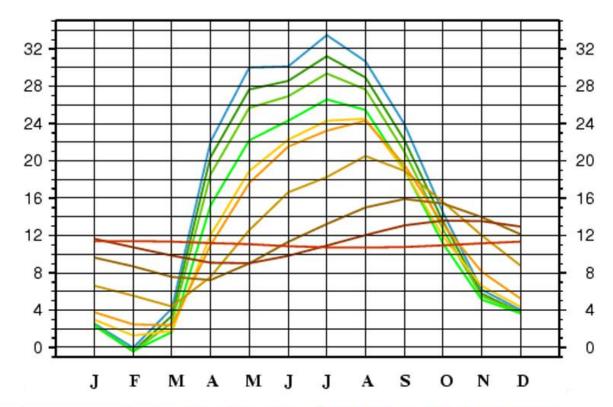
- Residual heat of cleaned sewage water in sewage treatment plants is used as heat source
- Issue for water legislations / authorisation for operator required
- Cooling of the sewage water is often restricted due to environmental legislations
- Quality of cleaned sewage water is important
 - e.g. iron phosphate deposits on the heat exchanger
 - Filter systems or special cleaning processes required (e.g. plate heat exchangers rather unsuitable)

Possible heat sources – sewage & pure water



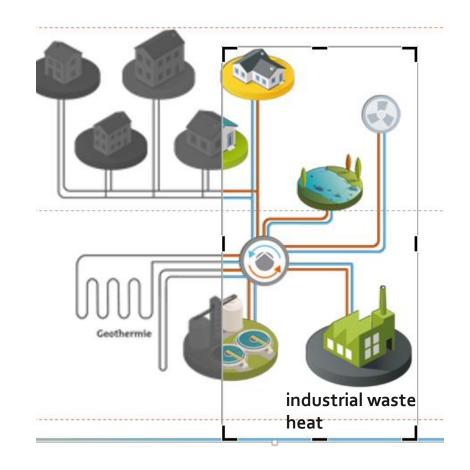

Figure 4: Illustration of the temperature curve of the wastewater treatment plant outflow of a combined wastewater sewer [Stadtwerke Lemgo]

Possible heat sources - near-surface geothermal energy


- Heat pump is using heat that is stored in the ground
- For extracting the heat a comprehensive installation of heat exchangers in the ground is required
- Heat exchangers are usually as ground collectors installed
- Heat source temperature is dependant on the depth of installation
- As deeper the installed heat exchangers as more constant the heat availability
- Low heat source temperature > heat yield per m² collector surface comparatively low > exploitation of vast areas necessary
- Further use of this area above ground resticted (e.g. agriculture usually still possible)

Possible heat sources - near-surface geothermal energy

Groundtemperature (°C) in 2cm, 5cm, 10cm, 20cm, 50cm, 1m, 2m, 4m, 6m, 12m depth


Figure 5 Soil temperatures at different depths [Potsdam Institute for Climate Research]

Possible heat sources – industrial waste & surplus heat

- Ideal heat source for heat pumps (if the heat extraction is plannable due to regular occurrence regarding heat amount / thermal output)
- Each form of waste heat from industrial processes usable if technologically exploitable (e.g. cooling water, cooling air, etc.)
- Active recooling possible
- Also the use / combination of industrial flue gas with heat pumps is possible

Summarize of different heat sources

Heat source	Typical source temperatures	Temperature fluctuations	Typical availabilities	Further information
Ambient air	0 °C – 40 °C	High	April – September	Local (own) weather stations
Lakes and rivers	2 °C – 20 °C	Medium	April – October	Local, competent water authority
Groundwater	3 °C – 15 °C	Low	All year round	Competent water authority
Wastewater/ pure water	7 °C – 20 °C	Medium	All year round⁴	Operator of the relevant sewage treatment plant
Shallow geothermal energy	0 °C – 19 °C	Medium	All year round	-
Industrial waste heat	14 °C – 50 °C	Individual	Individual	Corresponding industrial enterprise
Industrial flue gas/waste gas	30 °C – 50 °C	Low	Individual	Corresponding industrial enterprise

Table 1 Overview of heat sources [large heat pumps, supplemented] (AGFW)

... Defines the efficiency of heat pumps – it describes the **provided useful thermal energy** divided by the **consumed electrial energy**

$$COP = \frac{|\dot{Q}_{use}|}{P_{electrical}}$$

- Heat sources like air, geothermal energy, water and surplus heat are estimated as freely available
- \rightarrow Consumption is not considered in efficiency calculation \rightarrow Efficiency values higher than 1 possible
- →Use is considered cost-free **Heat pumps can be very energy-efficient and cost-efficient**
- \rightarrow General rule: The smaller Δ T- the higher the COP

Integration of Heat pumps into DH-systems

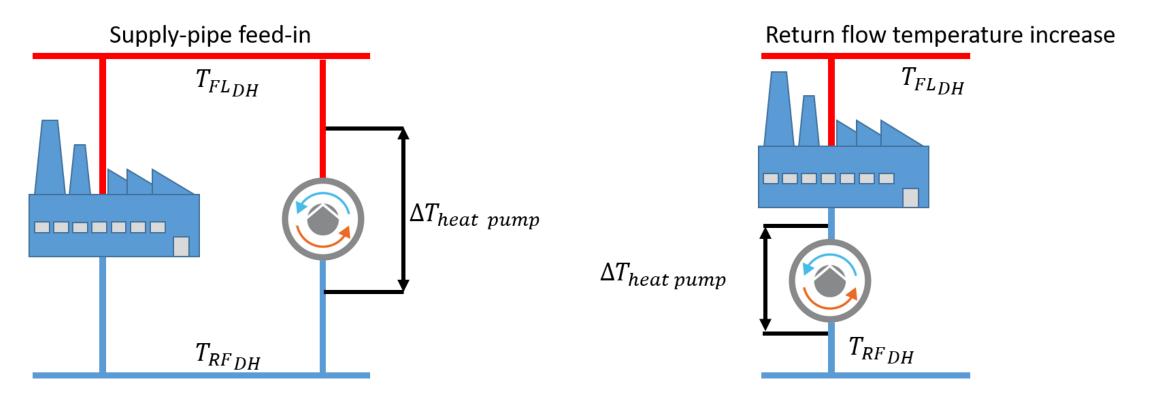
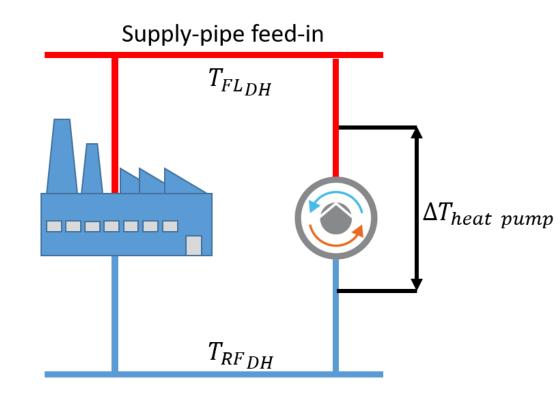


Figure 8 Different possible ways to integrate a large heat pump supply-pipe feed-in (left) and return flow temperature increase (right) [own illustration]



Integration possibilities – Supply-pipe feed-in

- Generally, **LHP can feed directly** in the supply pipe of a DH-System, if **required ΔT** can be met
- Heat pump must be designed for the max. flow temperature*

(*since T_{FL} is increasing when outside temperature decreases)

Integration possibilities – return flow temperature increase

 In case, the performance of a heat pump is too low, return flow integration could be an alternative

• Benefits:

- integration into an existing generation of a DH-system more easy
- Possible **future use** for feed-in scenario into supply pipe, since there is a general tendency to reduce T_{FL}

 $\Delta T_{heat\ pump}$

Return flow temperature increase T_{FLDH}

Refrigerants - overview

• Refrigerants are essential working medium and can be distinguished in:

Natural

- NH₃ (ammonia) and CO₂
- Very low global warming potential (GWP)
- Non-existent ozone-depleting potential (ODP)
- Only few or non environmental restrictions
- Not commonly used as refrigerant

Synthetic

- R-134a, R-152a and R-245fa
- Mainly hydrofluorocarbon (HFC)
- Several ecological issues
- Mainly used

Right now there is no restriction on the use of HFC for large-scale applications, but high GWP level refrigerants are restricted by the latest EU F-gas regulation.

→ In general, policy pushes forward the transiton towards natural refrigerants!

Refrigerants – Research & environmental issues

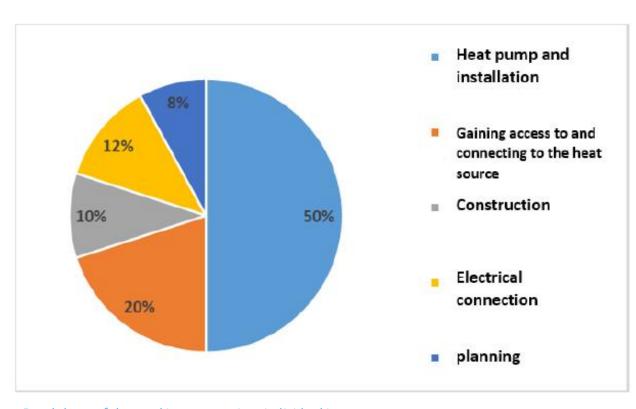
- Due to the temperature requirements of a district heating network only a limited number of possible refrigerants available
- Decisive requirements in that regard are:
 - the available heat source temperatures
 - the necessary feed-in temperature
 - the required heat output
 - the necessary COP
 - the heat pump technology

- Regarding environmental issues following aspects can be taken into account:
 - Detrimental effects on the climate
 - Environmental impacts
 - ozone depleting potential (ODP)
 - global warming potential (GWP)
 - Other aspects:
 - Safety precautions
 - Operating costs

Breakdown of the total investments:

Items taken into account in a large heat pump project:

- Large heat pump
- Gaining access to and connecting to the heat source
- Connection to the district heating network
- Electrical connection
- Construction costs
- Costs for planning and permissions



Economic viability

Breakdown of the total investments:

- The heat pump unit will account for approximately 50% of the total investment
- Costs to make the heat source usable from a technical point of view depend heavily on the heat source itself and the associated general conditions, such as...
 - accessibility
 - structural conditions
 - maintenance intensity
- Attention must be paid to the way in which the integration is designed (e.g. network temperatures & pressures or distance to the heating network, etc.)

Breakdown of the total investment into individual items Source: own presentation after Pieper and Energinet

Economic viability

Breakdown of the total investments and their variation towards the used heat source

Table 3 Specific amounts of the total investment in the case of large heat pumps, depending on the heat source used according to [Pieper]

Specific investment (total) in million €/MW _{th}	Flue gas	Wastewater	Waste heat	Groundwater	Air
0.5 – 1 MW _{th}	0.53 - 0.63	1.23 – 1.91	0.97 – 1.3	1.18 – 1.72	0.9 – 1.12
1 – 4 MW _{th}	0.46 - 0.53	0.72 - 1.23	0.72 - 0.97	0.77 – 1.18	0.73 - 0.9
4 – 10 MW _{th}	0.44 - 0.46	0.62 - 0.72	0.67 - 0.72	0.69 - 0.77	0.7 - 0.73

General benefits of LHP in DH-systems

Increased flexibility of the DH-system

- Quick + cheap start-ups
- Optimized runtime of base load plants

Better utilization of surplus heat production

• Utilization of low temperature and other redundant heat sources

Protection against (market) risks

- Hedge against price fluctuation of electricity and fuel costs
- Failure protection & Combination of DH & DC

Increase of renewable heat production

- No local emissions
- Positive boost for DH-image

Contact

AGFW-Project GmbH

Project company for rationalisation, information & standardisation

Stresemannallee 30 60596 Frankfurt am Main Germany

E-mail: info@agfw.de Tel: +49 69 6304 - 247

www.agfw.de

References

[Eselshöhe weather station and Bavarian State Office for the Environment]; quoted in AGFW 2020: "Praxisleitfaden Großwärmepumpen" p. 5

[Hessian State Office for Environment and Geology]; quoted in AGFW 2020: "Praxisleitfaden Großwärmepumpen" p. 6

[Stadtwerke Lemgo]; quoted in AGFW 2020: "Praxisleitfaden Großwärmepumpen" p.7

[Potsdam Institute for Climate Research]; quoted in AGFW 2020: "Praxisleitfaden Großwärmepumpen" p.7

Further literature

[AGFW1] AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK, Arbeitsblatt AGFW FW 309 Teil 1, Energetische Bewertung von Fernwärme – Bestimmung der spezifischen Primärenergiefaktoren für Fernwärmeversorgungssysteme -, 2014

[AGFW2] AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK, Arbeitsblatt AGFW FW 309 Teil 6, Energetische Bewertung von Fernwärme – Bestimmung spezifischer CO2-Emissionsfaktoren -, 2016

[Agrothermische Wärmeversorgung] Dr. Pietruschka und Dr. Kluge, Kalte Nahwärme: agrothermische Wärmeversorgung einer Plusenergiesiedlung, bauma 2013 [BDI] Gerbert, P. et al.: Klimapfade für Deutschland, 2018.

[EnEff: Wärme] Andreas Christidis et al, EnEff: Wärme, Einsatz von Wärmespeichern und Power-to-Heat Anlagen, AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e. V., 2017

[Energinet] Danish Energy Agency, Technology Data for Energy Plants for Electricity and District heating generation, 2016

[Large Heat Pumps] A. Davis, Large Heat Pumps in European District Heating Systems, 2016 zitiert in Grosse, R., Christopher, B., Stefan, W., Geyer, R. and Robbi, S., Long term (2050) projections of techno-economic performance of large-scale heating and cooling in the EU, EUR28859, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-75771-6, doi:10.2760/24422, JRC109006

[Literaturstudie NTB] Dr. Cordin Arpagaus et al, Hochtemperatur Wärmepumpen, Literaturstudie zum Stand der Technik, der Forschung, des Anwendungspotentials und der Kältemittel, Interstaatliche Hochschule für Technik Buchs, 2017 [OLG Düsseldorf] OLG Düsseldorf, Beschluss vom 29.06.2016 – VI-3 Kart 95/15(V)

[Pieper] Pieper et al, Allocation of investment costs for large-sclae heat pumps supplying district heating, CONECT 2018

[WKO und ÖKKV] Informative Zusammenfassung von Kältemittel-Alternativen, WKO Berufsgruppe Kälte- und Klimatechnik und Österreichischer Kälte- und Klimatechnischer Verein (ÖKKV), 2018

