

Combined Heat & Power (CHP)

Heat production & applications within DH-systems

LowTEMP training package - OVERVIEW

Introduction	Financial Aspects	Power-2-Heat and Power-2-X
Intro Climate Protection Policy and Goals	Life cycle costs of LTDH projects	Thermal, Solar Ice and PCM Storages
Intro Energy Supply Systems and LTDH	Economic efficiency and funding gaps	Heat Pump Systems
Energy Supply Systems in Baltic Sea Region	Contracting and payment models	LT and Floor heating
	Business models and innovative funding	Tap water production
Energy Strategies and Pilot Projects	structures	Ventilation Systems
Methodology of Development of Energy Strategies	Technical Aspects	Best Practice
Pilot Energy Strategies – Aims and Conditions	Pipe Systems	Best Practice I
Pilot Energy Strategy – Examples	Combined heat and power (CHP)	Best Practice II
Pilot Testing Measures	Large Scale Solar Thermal	
CO ₂ emission calculation	Waste & Surplus Heat	
LCA calculation	Large Scale Heat Pumps	

- Introduction to Combined Heat and Power
- Basic operating principles of CHP
- CHP-units
- Future prospects of CHP-technology

1. Introduction to Combined Heat and Power (CHP)

"It generates heat and power" or "It generates power and heat"

- The simultaneous generation of power and heat is increasing the energy efficiency as well as reducing CO2emissions
- CHP has several opportunities to reduce dependencies on fossil fuels
- does not contradict with the general goal of integrating renewable energies into the heating sector
- CHP is applicable independent of the energy source
- Primary energy saving potentials are up to 30% regarding the heating market even up to 70%

Introduction to Combined heat and power (CHP)

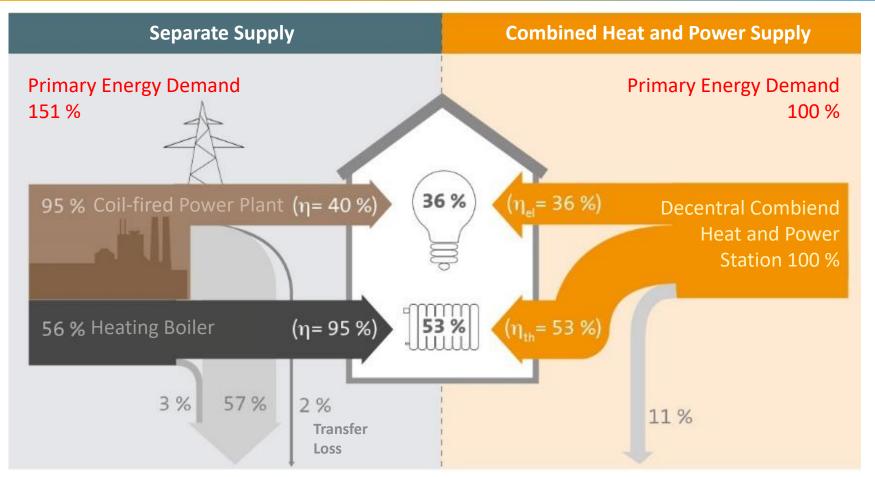
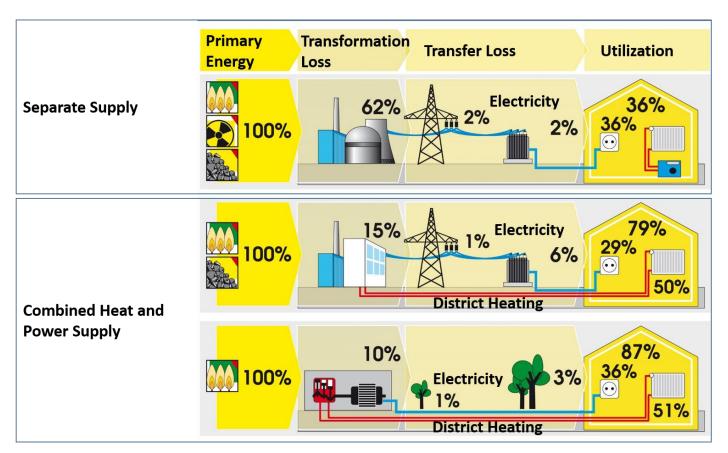


Figure 1: Benefit of CHP - Comparison of conventional energy supply and CHP regarding primary energy consumption (Source: ASUE20; translated [1])

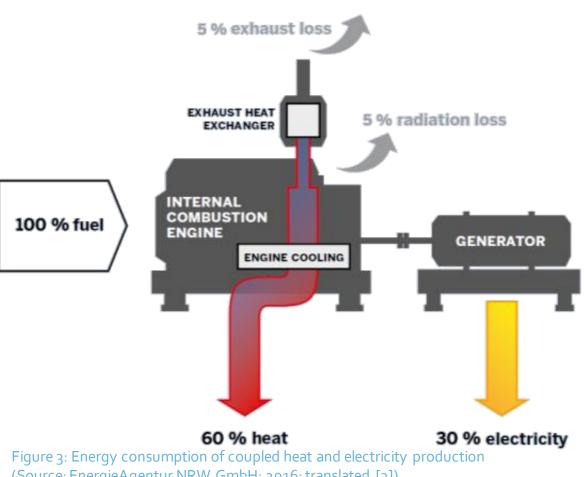


2. Basic operating principles of CHP

Basic operating principles

- 100 % fuel energy input can be converted into more than 90 % effective energy
- the utilization of conventional power plants is only of about 35-59% efficient

Figure 2: The energy flow in the pure energy supply as well as in the central and decentral CHP-generation (Source: ASUE99) [2]



Basic operating principles

- Simoultaneous generation of heat and electricity 0
 - Fixed ratio of heat and electricity generation •
- By Utilization of heat and electricity 0
 - efficiency increases up to 90 % compared to conventional power generation
- **Operation principles** 0
 - Power-led controlled, •
 - Heat-led controlled, •
 - line-commutated controlled •
- > Optimum effiencies only achieved during heat-controlled operation

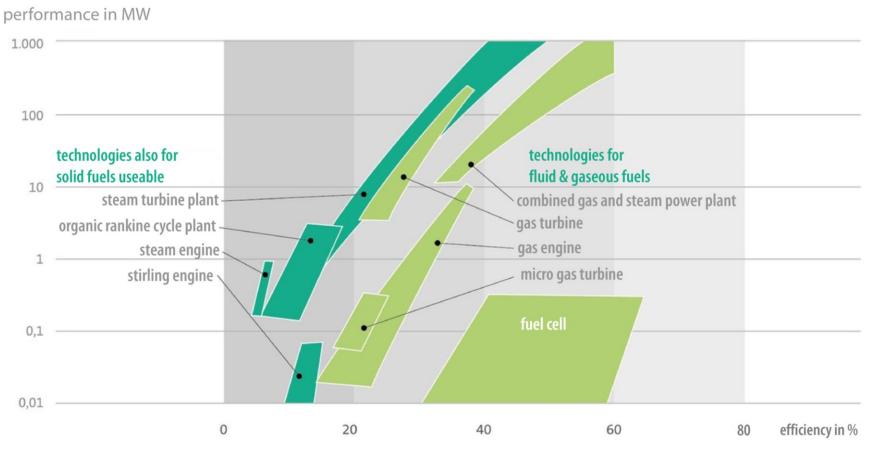
60 % heat Figure 3: Energy consumption of coupled heat and electricity production (Source: EnergieAgentur.NRW GmbH: 2016; translated [3])

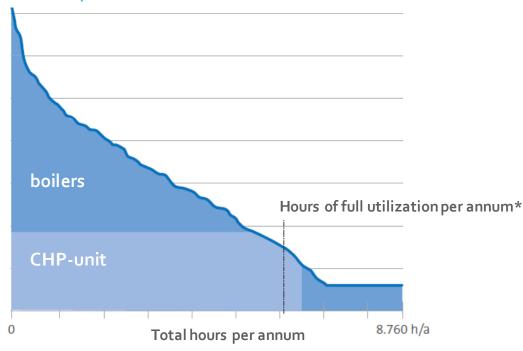
Control	Principle	Advantages	Disadvantages
Heat-led	Determined by the de- mand for heat	Highest degree of fuel utilisation	Lower power gener- ation
Power-led	Determined by the de- mand for power	Highest degree of power genera- tion	Lower degree of uti- lisation
Line-commu- tated	Determined by the grid re- quirements	Contribution to the stability of the power grid Marketing of balancing energy	

Table 1: Overview of different CHP-control designs (Source: Getec 2020 [4])

	POWER RANGE	FUELS
Steam or condensing turbine	500 MW < P_{el} < 1100 MW Nuclear power plant: P_{el} < 1600 MW	Coal (oil, gas, bio mass, waste nuclear power)
Gas turbine	1 MW < P_{el} < 545 MW Micro turbines: P_{el} < 100 kW	(natural) Gas, fuel oil
Combustion / reciprocating engine	1 KW < <i>P_el</i> < 10 MW	(natural, biomass) Gas, (biomass) fuels
Fuel cells	125 KW < <i>P_{el}</i> < 1,4 MW (59 MW prototype)	Methanol, natural gas, hydrogen, synthetic gas (coal gas)
Table 2: Classification of several CHP-units [7	1]	

CHP-applications - Classification of power ranges




Figure 5: Divers CHP-device technologies. Performance subject to efficiency (Source: ASUE16 [8])

Seizing & dimensioning of CHP-units

ordered annual load duration curve of the heat demand (space heating & hot water) Heat output in kW

*Sum of the annual operating hours calculated at nominal power.

Figure 6: Exemplified operation hours and dimensioning of a CHP-unit (Source: ASUE, 2015 [9])

- Right dimensioning ensures long durations and a high amount of full utilization hours per annum
- Approx. 20% of the thermal nominal capacity of the CHP-unit should be taken as a basis for calculation and planning
- Baseload is efficiently covered & 50 % of the required annual heat demand
- The remaining heat demand is usully covered with boilers or additional heat sources

3. Overview of CHP-units

CHP differentiated in fuels and applications

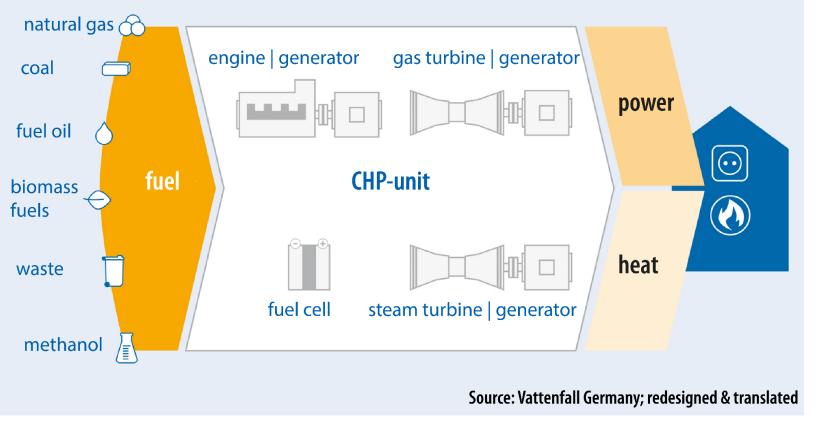


Figure 7: Supply chain of different incoming fuels to electricity and heat by utilize diverse CHP-devices (Source: Vattenfall Germany [10])

Combustion engines

- Standard combustion, usually supplemental boiler for peak loac
- Heat of cooling water and oil have temperature levels of 80-90°
- Exhaust gases temperature level high enough for steam generation

Operational characteristics

- Mostly rigid coupling between electricity and heat generation
- Engine modules generally operate at nominal load
- improvable with modern control systems and/or heat storages fuel
- Operation without constant supervision possible up to 72 hours

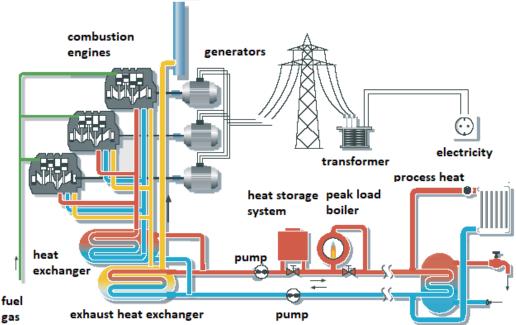


Figure 8: Common scheme of CHP-units working in a power plant. Several engines operates coupled for generation electricity and heat in case of huge demand (Source: AGFW11)

Gas turbines

- Systems consists of one or more gas turbines
- The heat utilization takes place in waste heat boiler with or without auxiliary firing
- Work related electricity values of 0,5 0,8 kWh_{el}/kWh_{th}
- Gas turbines use heat of 400-600°C from the exhaust gases
- The applications are highly developed, compact, very efficient **Essential characteristics**:
- Cheap operating conditions (start-up behaviour, automation)
- Decoupling of electrical power for heat production
- Compact design
- Low investments
- Low personnel requirements due to high degree of automation

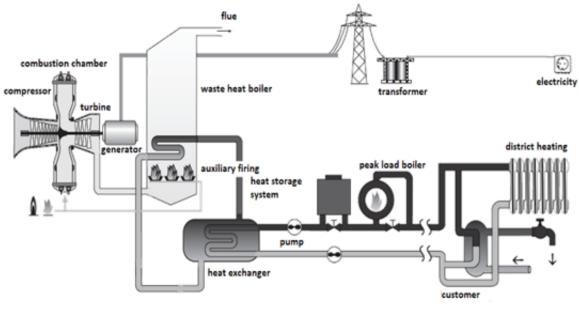


Figure 9: Example for decoupling District Heat from a gas turbine power plant (Source: AGFW11)

Steam / Condensing turbine

Operational characteristics

- Water is transformed into steam within a boiler system
- During expansion of the steam within a turbine the steam energy converts into motion which is transformed into electricity
- For heat production there are two different ways:
- Decoupling heat from the power plant process
- Using the excess heat of the condensation process

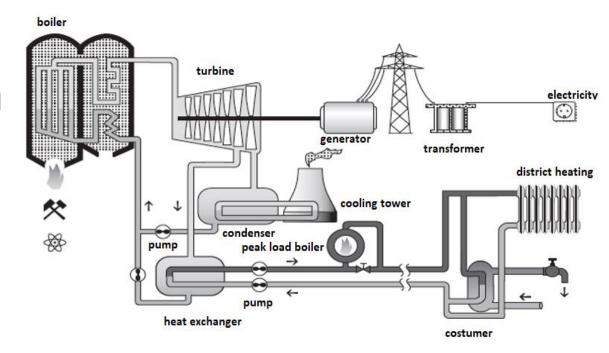


Figure 10: Main principle of a condensing power plant (Source: AGFW11)

Combined-cycle gas turbine (CCGT) plant

LowTEMP

- Gas turbines focus on the power generation (65-80%)
- Utilization of the exhaust gas heat can happen at low temperature
- > Mainly limited characterstics of the flue gas
- Work related electricity values of 0,8-1,2 kWh_{el}/kWh_{th}
- No additional heat source is required for the steam turbine process → high energy utilization

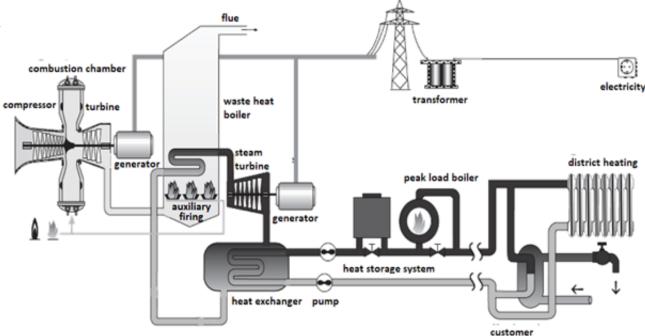


Figure 11: Decoupling District Heat from a gas and steam power plant (Source: AGFW11)

Combined-cycle gas turbine (CCGT) plant

Detailed explanation of the coupled gas turbine- and steam turbine processes

- Combination of one (or more) gas turbine(s) and one (or more) steam turbine(s)
- The 400-600°C of the exhaust gas produces live steam with 40-80bar/350-540°C
- The steam turbine is connected to heat exchangers and a DH network
- Auxiliary firing increases the electrical power of the steam turbine and/or DH

Characteristics of the waste heat process

- No additional heat source for steam turbine process required
- Low personnel requirements
- Relatively low investments
- Flat curve of the specific heat consumption in the electrical partial load area

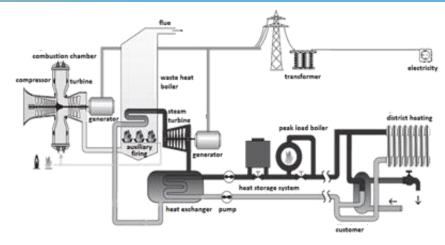


Figure 12: Decoupling District Heat from a gas and steam power plant (Source: AGFW11)

Fuel cells

- Direct coupled generation of electricity and heat without mechanical energy
- Controlled reaction of hydrogen and oxygen to water
- Electricity generated highly efficient by this eletrochemical process and good controllable
- different temperature levels of utilizable waste heat depending on the fuel cell technology
- Fuel cells are differentiated to their technology and/or operating temperature (low, medium, high)

Areas for improvement:

Optimized material, cell lifetime, investment costs and peripheral (Source: Vailla costs

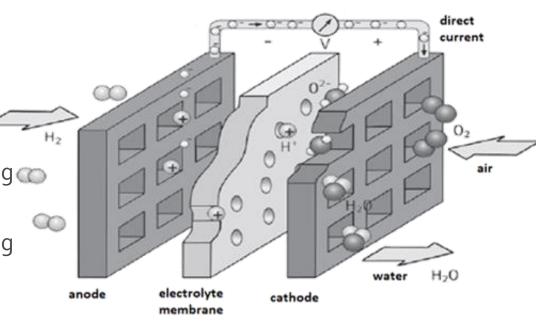


Figure 13: Principle operation of a hydrogen-based fuel cell (Source: Vaillant Remscheid [11])

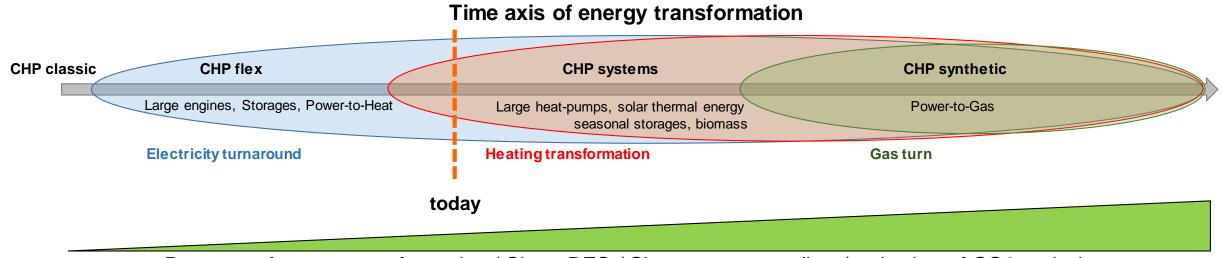
4. Future prospects of CHPtechnology

Summary of recent CHP-technology & future potentials

- CHP-plants have experienced rapid development in recent years
- CHP-applications contribute to energy and heat transformation in several ways
- flexible solution for accommodating an increasing amount of renewable energy sources in future
- Important interface for the sectors power, gas & heating

Changes are necessary!

- → most CHP systems are still using fossil fuels
- ightarrow alternatives are necessary and implementable also in already existing plants



Future prospects of CHP-technology

Possible renewable energy sources

- Using biomass & sewage gas
- Using Hydrogen or methane produced by renewable energies (so called synthetic gas) 0

Progress of energy transformation / Share RES / Share sector coupling / reduction of CO2-emissions

Figure 14: Time axis of energy transformation and the role of CHP (Source: AGFW 2019)

Sources

- [1] Asue 2020. https://www.asue.de/node/2880
- [2] Asue 99. https://www.asue.de/node/1934
- [3] EnergieAgentur.NRW GmbH: 2016; translated; https://www.energieagentur.nrw/content/anlagen/B_EA453en.pdf
- [4] Getec 2020. https://www.getec-energyservices.com/Home/Technologies/CHP-units/
- [5] Asue 2015. https://www.gemeindewerke-huenxe.de/fileadmin/gelsen wasser_de/content/waerme/dateien/broschuere_waerme-plus_asue_bhkw-fibel-2012.pdf
- [7] R. Zahoransky: Energietechnik Systeme zur konventionellen und erneuerbaren Energieumwandlung. Kompaktwissen für Studium und Beruf. 8. Überarbeitete und ergänzte Auflage. Wiesbaden: Springer Vieweg, 2019.
- [8] Asue 16. https://asue.de/node/2587
- [9] Asue 15. https://asue.de/blockheizkraftwerke/grafiken/geordnete_jahresdauerlinie_des_waermebedarfs_waermebedarfsdeckung_durch_bhkw_und kesselanlagen
- [10] Vattenfall Germany. https://group.vattenfall.com/de/zukunft/kraft-waerme-kopplung
- [11] Vaillant Remscheid. Quoted after <u>https://www.bhkw-infozentrum.de/innovative/bz_gl.html</u>
- [all others]. Own illustrations AGFW.

Contact

AGFW-Project GmbH Project company for rationalisation, information & standardisation

Stresemannallee 30 60596 Frankfurt am Main Germany

E-mail: info@agfw.de Tel: +49 69 6304 - 247 <u>www.agfw.de</u>

