



Ref. Ares(2020)5128052 - 30/09/202

# Harmonized overview

AUTHORS : CHRISTA DE RUYTER & MAX BROUWER

DATE: 30.09.2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°892429



## **Technical References**

| Project Acronym        | R-ACES                                                        |
|------------------------|---------------------------------------------------------------|
| Project Title          | fRamework for Actual Cooperation on Energy on Sites and Parks |
| Project<br>Coordinator | S-ISPT – Institute for Sustainable Process Technology         |
| Project Duration       | 1 June 2020 – 30 November 2020                                |
| Project Website        | www.r-aces.eu                                                 |

| Deliverable No.                     | D1.2                                                                 |
|-------------------------------------|----------------------------------------------------------------------|
| Dissemination<br>level <sup>1</sup> | PU                                                                   |
| Type Deliverable <sup>2</sup>       | R                                                                    |
| Work Package                        | 1 : Condense                                                         |
| Lead beneficiary                    | Christa de Ruyter - S-ISPT (christa.deruyter@ispt.eu / +31637397962) |
| Contributing<br>beneficiary(ies)    | S-ISPT, CLEAN                                                        |
| Due date of<br>deliverable          | 30-9-2020                                                            |
| Actual submission date              | 30-9-2020                                                            |

<sup>1</sup> PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

 $^2$  R = Document, report

DEC = Websites, patent fillings, video, etc. DEM = Demonstrator, pilot, prototype OTHER = other





## **Document history**

| V   | Date       | Author<br>(Beneficiary) | Description       |
|-----|------------|-------------------------|-------------------|
| 0.1 | 02-09-2020 | Christa de Ruyter       | First version     |
| 1.0 | 30-9-2020  | Christa de Ruyter       | Submitted version |

## **Project Summary**

The R-ACES project is an initiative promoted by 8 partners from 6 European countries, with the vision to support high-potential industry parks and clusters to become fully fledged ecoregions that reduce emissions by at least 10 %. R-ACES means a step-change in the contribution of European Industry to the climate targets of the EU. The industry sector after all represents 25% of all energy demand – and 50% of the total cooling and heating demand on the continent; yet only 16% comes from renewables. By focusing on collective measures and clustering, the efficiency of industry can be drastically increased.

The focus of R-ACES therefore is to turn high-potential, high-impact industrial clusters into ecoregions that achieve at least a 10% reduction in emissions. They do so by exchanging surplus energy, making extensive use of renewables and tying everything together with smart energy management systems. An ecoregion is a geographic area where energy and information exchanges occur between various companies and actors to reduce waste and energy consumption. Ecoregion can be centred on an (eco-)industrial park or (eco-) business park, linked to its surroundings by a 4th/5th generation district heating/cooling network.

R-ACES is the capping stone, condensing the knowledge and experience gathered throughout EU and national projects into a set of three focused tools, namely a self-assessment tool, a legal tool and a smart energy management platform. The tools are embedded in support actions built around peer-to-peer learning, more formal coursework and webinars, and serious games. Together they enable a cluster to really become an ecoregion and set up meaningful energy collaboration. The entire package of tools and support is aimed at the high-potential clusters identified in the European Thermal Roadmap. It will be validated in three ecoregions, actively deployed in another seven regions, and disseminated to identified ninety regions European wide. In addition, the tools and support methodology will be made available to third parties in a sustainable way after the end of this project.





## **Partners:**

| Institute for<br>Sustainable<br>Process Technology  | https://ispt.eu/                    |
|-----------------------------------------------------|-------------------------------------|
| Condugo                                             | https://www.condugo.com/            |
|                                                     | https://www.dowel.eu/management_en/ |
| Spinergy                                            | http://www.spinergy.it/             |
| <pre> Clean </pre>                                  | https://www.cleancluster.dk/        |
| LEANTECH CLUSTER                                    | http://www.energycluster.it/en      |
| r<br>Pom                                            | https://www.pomantwerpen.be/        |
| ESCI<br>European Science<br>Communication Institute | https://www.esci.eu                 |





## **Executive Summary**

The R-ACES project intends to pave the road for effective energy exchange in industrial clusters and business parks in Europe by providing a self-assessment tool, legal tool, and energy management tool. To develop these tools, we can use the insights of previous European projects on energy cooperation. In this report, we will make a step by making a harmonized overview of the literature. This will result in an overview of barriers/ solutions/KPIs and relevant tools. The results were reviewed by several experts. In the end, we make some suggestions for the development of the R-ACES tools.

## Key words

### **R-ACES** keywords

Industrial Symbiosis, Energy System Integration, District Heating and Cooling, Energy Cooperation, Ecoregion, Eco-Industrial Parks

### Deliverable keywords

Literature review, Tool, Barriers

## **Disclaimer**

This publication reflects only the author's view. The Agency and the European Commission are not responsible for any use that may be made of the information it contains.





## **Abbreviations**

| Abbreviation | Description                          |
|--------------|--------------------------------------|
| CHP          | Combined heat and power production   |
| CSA          | Coordination and Support Action      |
| DH           | District Heating                     |
| DHC          | District Heating and Cooling         |
| EBP          | Eco-business park                    |
| GHG          | Greenhouse Gas                       |
| LESTS        | Legal, Economic, Spatial, Technical, |
|              | Social/Managerial                    |
| KPI          | Key Performance Indicator            |
| LC           | Learning Community                   |
| RE           | Renewable Energy                     |
| RES          | Renewable Energy Strategy            |
| SME          | Small Medium Enterprise              |



# D1.2 Harmonized overview

## Table of Contents

| R-ACES KEYWORDS DELIVERABLE KEYWORDS                                                            | 5<br>5                           |
|-------------------------------------------------------------------------------------------------|----------------------------------|
| INTRODUCTION                                                                                    | 8                                |
| Objective of the work package 'Condense'<br>Objective of the deliverable                        | 8<br>8                           |
| METHODOLOGY                                                                                     | 10                               |
| UNIFORM REPORTING STRUCTURE<br>PEER2PEER REVIEW PROCESS<br>INPUT FOR THE R-ACES TOOLS           | 10<br>11<br>12                   |
| SECTION 1: UNIFORM REPORTING STRUCTURE                                                          | 13                               |
| ACTUAL HARMONIZATION PROCESS<br>LEGAL<br>ECONOMIC<br>SPATIAL<br>TECHNICAL<br>SOCIAL/ MANAGERIAL | 13<br>14<br>16<br>16<br>16<br>17 |
| SECTION 2: PEER2PEER REVIEW                                                                     |                                  |
| SECTION 3: INPUT FOR THE R-ACES TOOLS                                                           | 19                               |
| ANNEX 1: FULL LIST OF SELECTED REPORTS                                                          | 22                               |
| ANNEX 2: OVERVIEW OF BARRIERS, SOLUTIONS, KPIS, ALREADY EXIST<br>TOOLS, AND R-ACES TOOL         | ING<br>26                        |
| ANNEX 3: QUESTIONS                                                                              |                                  |





# Introduction

# Objective of the work package 'Condense'

In the scope of the work package 'Condense', we aim to condense the insights of previous European projects regarding district heating and cooling (DHC) and joint energy services as well as academic literature. Special attention is given to the identification of associated technical and non-technical barriers/drivers and ways to overcome them. The identification process is the start of a longer effort to address barriers in a more effective way. A crucial step in this process is the classification and harmonization of barriers in a single framework. This is done in the scope of D1.2 'Harmonization'. Later in the project, the harmonized knowledge is used to develop three tools: a self-assessment tool, a legal tool, and an energy management platform. The three tools together form a R-ACES Tool Box that aims to support practitioners in ecoregions to come to energy cooperation. In order to realize this goal, the tools have to be tested. Therefore, we will also start with the selection of seven ecoregions. First, a long list will be created (D1.3). Afterwards, we define a short list by using strict selection criteria (D1.4).

#### **Objective of the deliverable**

In D1.1, almost 500 barriers of energy cooperation have been identified in various research programs such as H2020 and InterregNWE (for a full list of projects, see Annex 1). Furthermore, various solutions and existing tools have been collected. The barriers were classified in five different perspectives: legal, economic, technical, spatial and social-managerial (LESTS). Some of the barriers within these perspectives discuss similar topics but use a different taxonomy. And sometimes solutions or tools are suggested in one project for a barrier that is identified in another project. The main objective of D1.2 is to identify such relations and to 'harmonize' the taxonomy. The result is a shorter list of barriers within the LESTS classification framework with consistent taxonomy and associated solutions and tools. This is the next step towards capturing the insights of previous research in a legal tool, self-assessment tool and energy management platform.

A second objective in D1.2 is to assess the relevance and impact of the barriers and associated solutions on the success of energy cooperation. This helps to focus the tools on the most important issues and solutions. For that, several experts have been asked to review the list of barriers and propose solutions of their own. The review process consists of two-steps: a questionnaire and an optional semi-structured interview. The second step of the expert review has not concluded yet. We therefore only report on the first step here. The results of the second step will be discussed in the results of work package 2.

A third objective in D1.2 is to define the scope of the R-ACES Toolbox. The target group and applications of the tools are conceptualized here, before the prototypes are further developed in work package 2.

The steps are summarized below.

- **Create a uniform reporting structure** for presenting the insights of previous projects. The structure covers the following topics:
  - o Taxonomy of barriers/drivers
  - Solutions to barriers
  - o Already existing tools that might support the R-ACES Toolbox
  - Key performance indicators that might be useful for the ecoregions to use (Ecoregion KPIs).

Moreover, the structure should ensure compatibility between the three R-ACES tools developed further on in the R-ACES project.

- Validate the results through a two-step expert review progress
- Input for the R-ACES Toolbox





By going through these steps, we form a basis for the development of the three R-ACES tools.

Chapter structure

- Description of the methodology used
- Section 1: Uniform reporting structure
- Section 2: Validate results through an expert review
- Section 3: Input for the R-ACES Toolbox





## Methodology

Within this section, three methodological issues are further elaborated (see figure 1). First of all, a detailed description is given of the harmonization template, which will be used to structure the further harmonization process. Afterwards, more information is given on the way we organized the expert review process and the input that will be given for the R-ACES Tool Box.



Figure 1: Process of coming to a harmonized overview

## Uniform reporting structure

In order to reach a uniform reporting structure for barriers, solutions, tools and key performance indicators (KPIs) identified in previous projects, a harmonization strategy is used. The strategy consists of three steps:

- 1. Classify longlist of barriers according to Legal, Economic, Spatial, Technical and Social-Managerial perspectives (LESTS).
- 2. Condense barrier into shortlist.
- 3. Associate solutions, existing tools and key performance indicators (KPIs) to shortlist of barriers.

In the first step, the LESTS framework is used to classify barriers. See D1.1. for a more detailed description on why this framework was selected.

In the second step, the goal is to determine similar themes between barriers on a more detailed level. To this end, two levels of subcategories were added to the classification model. The lowest level is created by grouping barriers that are very similar, often with minor alterations to the barrier description. The highest level is created by identifying relations between barriers. To help the condensation process, we added a constraint to our model: each LESTS category can have 4 first-level subcategories and each first-level subcategory can have another five subcategories. That means that we could have a maximum of 5 (LESTS) x4(first level) x5(second level) = 100 barriers. Or in other words, the task was to condense 500 barriers into 100.







Figure 2: Barrier identification structure

In the third step, proposed solutions, tools, KPIs and R-ACES tools are associated to the 100 barriers in step 2.

#### Peer2peer review process

For the validation of the harmonization process, key persons of successful long-running industrial symbiosis projects and of industrial cooling/residential heating cooperation have been involved. A two-round review was conducted in the spirit of the Delphi method (see box). In the first step, the experts received a questionnaire (annex 3). The questionnaire was aimed to identify those barriers that are most important to the success of energy cooperation. In addition, the experts have the opportunity to suggest solutions.

In the second step of the review, a semi-structured interview is conducted. The idea here is to present the list of barriers selected by the experts themselves, including the suggested solutions, and discuss this result more in-depth. This is the so called 'group response' in the Delphi method.

The following research questions were used to structure the interview (see Annex 3 for the full questionnaire):

- How relevant is the list of harmonized barriers?
  - Does the expert recognize the barrier from his/her own experience?
  - How important is the barrier relative to the other barriers to the success of industrial symbiosis?
- How applicable are the solutions proposed in previous projects?
  - Is the expert familiar with the proposed solutions?
  - o Are the solutions expected to work?
  - Are the solutions feasible for the expert to apply?

The following results are obtained this way:

• Identification of barriers that are not recognized by the experts. This could mean that the barrier is not present everywhere and may be region-specific. However, it could also mean that an expert is not aware of the existence of a certain barrier.

The Delphi method was developed by RAND in the 1950s, originally to forecast the impact of technology on warefare. The idea is to use a group of experts who receive a and questionnaire reply anonymously. The researchers then analyze the feedback and formulate a group response. The group response is given back to the expert group and the process is repeated until a consensus is reached.

In a two-step Delphi method, the process is repeated twice; this means that the experts receive the group response once and provide feedback twice.

Source:

https://www.rand.org/topics/d elphi-method.html





#### D1.2 Harmonized overview

- Identification of which barriers that are recognized by the experts. These barriers will be important to address in the self-assessment or legal tool.
- Identification of solutions that are not recognized/ applicable. This may mean that alternative solutions need to be sought.
- **Identification of applicable solutions.** These solutions are included in the self-assessment tool and enriched with methodologies to implement the solutions.

## Input for the R-ACES tools

In work package 2, three R-ACES tools will be developed. Within this work package also the target groups (groups of users) of the R-ACES tools are identified and asked to evaluate the prototypes. To stimulate the development of the tools, the R-ACES tools are conceptualized at the end of this deliverable. Provided are:

- a description of the expected target group.
- a description of the tool and its purpose.
- application phase of the tool: exploration, implementation or operational.
- methodology of the tool.
- information regarding barriers/solutions/KPIs/Tools

This conceptualization is further discussed in work package 2 where the prototyping takes place.





# Section 1: Uniform reporting structure

For this deliverable, we dived into the results of previous European and academic projects. Most of these projects were selected in the scope of D1.1, but we added some additional reports as a response to new insights. A full list of the selected reports can be found in Annex 1. From these reports, we gathered the following information: barriers/drivers, solutions, tools and KPIs. We did this by using the harmonization template. Below, we will describe the harmonization process. Afterwards, attention will be paid to the considerations regarding barriers/ drivers & solutions, considerations regarding found tools, and the considerations regarding often mentioned KPIs. These considerations will be discussed per LESTS category.

#### Actual harmonization process

We used the harmonization template as a guide through the harmonization process. First, we categorized all barriers/drivers, solutions, tools and KPIs mentioned in the reports according to the LESTS framework. This resulted in an excel file with 500 quoted barriers/drivers, many solutions, 20 tools, and 55 KPIs<sup>1</sup>. The file contained very useful information, but the information was not organized enough yet. One main issue was that many described barriers/drivers overlapped with each other. To further harmonize the results, we printed the excel file and started marking all barriers/ drivers according to predefined sub categories:

- Legal: (Knowledge of) regulations, Permits, Contracts
- Economic: Capital available, Costs & Benefits; Risks, Payback period
- **Spatial:** Geographic proximity, Spatial planning, Geographic information system
- **Technical:** Existing infrastructure, Fitting heating/cooling supply and demand, Readiness of technology
- **Social/ Managerial:** Culture/priorities, Communication/collaboration, Time, Available expertise

Afterwards, we merged the overlapping barriers together in such a way that every sub category would include a maximum of five barriers. As this was done, we collected all solutions described in the literature for a certain barrier. Last but not least, we gathered KPIs and tools described in the selected projects. An overview of this information can be found in Annex 2.



Figure 1: Visualization of the harmonization process

<sup>&</sup>lt;sup>1</sup> If you are interested in the content of the excel file, please contact the main author of this deliverable.





#### Legal

In the previous section, the general harmonization process was described. Within this section, more attention will be given to considerations regarding the barriers/drivers, solutions, tools, and KPIs within the legal category.

In the selected reports, 70 legal barriers/drivers were mentioned. These barriers/drivers differed from legal difficulties regarding cross border exchanges to disorderly legislation to confidentiality issues in contracting (In Deal, 2016; Arentsen, Klok & Bruck, 2016; Scaler, 2017). Some barriers/drivers referred to a situation in a specific country. In Romania, for instance, a legislative framework is lacking (In Deal, 2016). Such barriers/drivers were not taken into consideration. As a closer look was given to the different barriers/drivers, it became clear that there were three sub categories: (Knowledge of) regulations (mentioned 29 times), permits (mentioned 4 times), and contracts (mentioned 8 times). For each sub category, specific barriers/drivers are defined (see Annex 2). This was done by merging barriers/drivers mentioned in the literature, for example, the quoted barriers 'Uncertainty in national legislation', 'Legal uncertainty', 'Uncertainty of future policy', and 'Uncertainty of approach taken by new regulations' were merged into one barrier 'Legal uncertainty'.

After all barriers were merged into a set of non-overlapping barriers, we investigated the provided solutions. It should be noted that solutions regarding barriers in the '(Knowledge of) regulations' section often included solutions that should be applied on a national governmental level. These solutions do not fit the R-ACES scope, because we focus on the regional level. We focus more on solutions that can be used at a regional level. However, the solutions are still presented in the table in Annex 2.

No relevant KPIs were mentioned in respect to the legal category. Regarding tools, only one already existing tool was mentioned. This was a tool of the CoolHeating project (CoolHeating, 2016) in which examples are given of potential legal contracts. Another legal tool will be developed by the So What project, but this tool is not publicly available yet (So What, 2019).

#### Economic

The selected reports mentioned a total of 177 economic barriers/drivers. Some of these barriers were rather country specific. In some Eastern European countries existing DHC networks are rather old, therefore large investments are necessary to upgrade the networks (In Deal, 2016). We excluded the barriers that were really related to the situation in one specific country. Afterwards, we further categorized the different barriers/drivers into capital available (mentioned 27 times), costs and benefits (mentioned 49 times), risks (mentioned 19 times), and payback period (mentioned 8 times). Of course, the payback period partly has to do with the amount of capital available. However, the specific nature of the investments with a high CAPEX and a relatively low OPEX make it extra hard to find capital for energy cooperation projects. Another issue of consideration is the fact that business parks are often quite unstable (meaning that the companies change fast). The chance of fast changing companies makes it harder to have long running projects with long payback times. Therefore, the payback period is added as an additional sub category.

For each sub category, we defined a set of three to five barriers. These barriers are not completely disjunct due to the fact that the complex economic reality of energy cooperation does not allow nonoverlapping barriers. The available capital is inherently connected with the foreseen costs and benefits, the risks, and the payback

### Fitting heat/cooling demand & supply

As one can see in Annex 2, we did not include fitting heating/ cooling supply and demand to the set of economic barriers/drivers. aware We are that matching heating/ cooling supply and demand is one of the main requirements for a sustainable business case. However, it is also a technical requirement. Since we did not want to mention the barrier in both the economic and the technical category, we decided to only include it as a technical one.

time. Instead, we based the barriers on the amount of times a specific barrier was mentioned in the literature.





As the barriers were defined, we looked at the solutions proposed in the different studies. We matched these solutions to a specific barrier. In the literature, many different kind of solutions are described for the economic barriers. Solutions diverge from 'smart billing' to 'energy management at park level' to 'integration of different kinds of values: reduction of fuel poverty, local economic growth and carbon reduction' to 'digital transformation of energy data'. In annex 2, one can see which solutions we assigned to different barriers.

We then looked into the KPIs that might be useful in dealing with economic barriers. Within the literature, we found many potential economic KPIs, among others KPIs related to:

- Investments
- Risks
- Costs & Benefits
- Profitability

Many of the KPIs are in one way or the other related to another one. Which KPI is most useful depends on the specific energy cooperation context. To give more insight in the usefulness of the different KPIs, we placed them in a cause-effect diagram (see figure 3). Within the diagram, the goal is to create an economically feasible project. The feasibility is organized in multiple potential issues: investments, costs & benefits, risks and profitability. For every issue, we identified multiple potential KPIs. All in all, the diagram might be useful to help stakeholders selecting the right KPIs within their context.



Figure 2: Cause effect diagram of economic KPIs

We also looked at tools that might support stakeholders when dealing with economic issues. In the literature, we found many potential existing tools. Three examples:

- A business planning tool (waste heat project) that gives useful instructions on how to develop a business plan.
- EnergyPRO, a commercial modelling software used to carry out integrated detailed technical and financial analysis of both existing and new energy projects. The tool provides the user with a detailed financial plan in standard format, accepted by international banks and funding institutions. This includes a presentation of the operating results for the project, monthly cash flows, income statements (P&L), balance sheets and key investment figures such as NPV, IRR and payback time. The software enables the user to calculate and produce a report for the emissions (CO2, NOX, SO2, etc.) by the proposed project (Upgrade DH, 2018).
- An economic calculation tool for small modular district heating and cooling projects. It can be used to perform a feasibility analysis for implementing new district heating units/systems. The tool is a Microsoft Excel based spreadsheet and is easy to use. It uses macros and Visual Basic for





Applications programming. It is intended for district heating utilities, local governments and policy makers (UpgradeDH, 2018).

The three tools differ from each other in ease of use, the costs, and the potential outcome. The EnergyPro tool <from  $\in$  3600 onwards> provides, for example, a detailed financial plan, whereas the business planning tool <free> gives only instructions on how to develop a business model.

#### **Spatial**

In regard to the spatial aspect of energy cooperation, less barriers were mentioned in the selected reports. In total, only 18 mentioned barriers had to do with spatial issues. These barriers were all rather generic and could be applicable within the scope of any energy cooperation project within Europe. The barriers can be divided into three categories: geographic proximity (mentioned 6 times), spatial planning (mentioned 5 times), and Geographic Information System (mentioned 1 time). For each category, one specific barrier was identified in the literature. Afterwards, potential solutions were matched with the identified barriers. We also looked at potential KPIs and we found three of them:

- On site heat ratio
- Relative importance of losses
- Distance to nearest existing DHC network

Moreover, we found two tools that might help stakeholders to deal with spatial issues:

- The Thermos software tool helps to create a heat and cold map. The tool also has a demand estimation method operating with limited data inputs in any location.
- Thermal imaging via airplane to create more detailed data on heat clusters.

The two tools can both be used as complements during the planning process. Of course, we are aware that more tools (like VR/AR tools) are developed. However, we did not find any expert evaluation of such tools in the selected literature. Therefore, we did not include them in the tools list. We will, in the scope of work package 2, look at other tools that might be of interest.

## **Technical**

The selected reports mentioned 47 barriers related to the technical dimension of energy cooperation. The barriers were divided into three sub categories: existing infrastructure (mentioned 4 times), fitting <heating/cooling> supply and demand (mentioned 12 times), readiness of technology (mentioned 13 times). As one can see, the categories do not cover all identified barriers. This has to do with the fact that some barriers were very situation specific, for example, a barrier if you want to co-generate with bio-methane. Such very specific barriers were excluded from the final list of barriers.

Each sub category was divided into 2 – 3 specific barriers. Afterwards, potential solutions were assigned to each barrier. Often the proposed technical solutions were formulated very general. The S-PARCS project mentioned for example that an ESCO management could fix issues related to lacking infrastructure (S-PARCS, 2019). This might, of course, be an option, but it remains to be seen how feasible such solutions are.

Similar to the economic category, a lot of potential KPIs were found to deal with issues in the technical domain, for example:

- Energy losses in kWh/year
- Maximum hourly surplus deficit
- Availability factor

The manifold of available technical KPIs makes it difficult to decide which KPI is the best option in a



Figure 3: Cause effect diagram of technical KPIs





certain situation. Therefore, we made a cause effect diagram (see figure 4).

Like for the other categories, we looked at the different tools available to help stakeholders to deal with technical issues. We found multiple tools that are partly overlapping with the tools found in the economic and spatial category. However, these tools have special features that also make them useful to deal with technical issues:

- Thermal imaging via airplane can also be used to discover heat leakages in the existing infrastructure. This can help stakeholders to investigate the status of the current (DHC) network.
- Heat solution by ENFOR is an integrated tool specialized in the forecasting and optimization for district heating. By using weather forecasts, the tool provides heat demand forecasts. These forecasts can be used to optimize the supply temperature.
- The Waste heat potential tool strengthens energy planning. The tool helps to identify waste heat potential.
- The thermos software is an optimization model to optimize supply for identifying a cost-optimal network design by allowing users to take into account energy output over time through varying demand profiles and different tariffs.

## Social/ Managerial

The most barriers/drivers were found in the social/ managerial domain. We found a total of 184 potential barriers/drivers. Most of them were applicable in many contexts. We identified four sub categories: culture/ priorities (mentioned 39 times), communication/ collaboration (mentioned 81 times), time (mentioned 5 times), and available expertise (mentioned 21 times)<sup>2</sup>. For each category 3 or 4 concrete barriers are identified. Afterwards, we looked at the solutions that would fit specific barriers. Most solutions are concerned with better communication, used communication techniques, used managerial structures, external consultants, or responsibility structures.

We also identified multiple KPIs. The KPIs in this are not always directly related to the barriers found. Instead, they are sometimes related to the proposed solutions. Thermal comfort, for example, is a way to support the solutions related to the potential barrier of lacking community acceptance (for more information see Annex 2). Below, an overview of the different KPIs is given (for more information to which barriers/solutions a KPI is coupled, see Annex 2):

- Thermal comfort
- Improved access to online services
- Public safety
- Degree of users' satisfaction
- Reduction of the number of communication channels
- Number of direct competitors in the network
- List with information that is still missing/ not up to date
- Share of relevant stakeholders involved in the process
- Power differences between stakeholders

As for the other categories, we looked at potential tools. Below, a short description is given of the three identified tools:

- The Esteem tool aims to create acceptability among project members. The ESTEEM process works through a path composed of the step by step application of small tools.
- Oxfam Novib trust tool measures the level of trust between stakeholders. The tool can help stakeholders to get insight in the amount of trust available in the consortium.
- The EnergyPro tool can help to create a good information base among different stakeholders.

<sup>&</sup>lt;sup>2</sup> The categorization is a little different as foreseen in the first deliverable. This is due to the fact that we did not take available expertise and time into consideration. However, it turns out that these factors are considered to be very important. Moreover, it turned out to be difficult to make a clear distinction between collaboration and communication, and between culture and priorities.





## Section 2: Peer2peer review

In D1.2 we present the results of the first part of the peer-to-peer review: a questionnaire in which experts were asked to assess the relevance of the barriers. In total, five experts participated from the Netherlands and Denmark with experience in research, engineering, project management and policy making and backgrounds in (municipality-owned) district heating companies, network organizations and university. The results are shown in the table below:

| Category          | Most important (at least mentioned 3 times)                                                                                                                                                                                                                                                                             | Least important<br>(mentioned less than 2<br>times)                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legal             | Complexity of regulations<br>Uncertainty about<br>developments of legislation<br>Complexity of multi-<br>stakeholder partnerships                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Economic          | Energy exchange is not core<br>business<br>Cost/Benefit asymmetry: the<br>party making the costs is not<br>always the party receiving the<br>benefits<br>Fear of security of supply<br>High CAPEX and low OPEX<br>Payback is too long for private<br>investors<br>Complexity of calculation of<br>return on investments | Existing plants are not<br>correctly depreciated<br>Limited access to external<br>capital<br>Uncertainty about price<br>development (e.g. of heat due<br>to seasonal demand)<br>Energy costs are not<br>considered in the<br>plant/business park<br>Concerns about the long-term<br>viability of district heating<br>Lock-in of selected technology<br>Fear of hidden cost<br>Fear of competitive<br>disadvantages from sharing<br>information and data |
| Spatial           | Lack of existing infrastructure<br>in direct environment                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Technical         | Lack of infrastructure<br>Quality of heating and cooling<br>(e.g. temperature) supply<br>does not meet demand                                                                                                                                                                                                           | Outdated existing<br>infrastructure<br>Advanced ICT infrastructure is<br>required<br>Heating & Cooling supply<br>quantity does not meet<br>demand<br>Most potentials have already<br>been realized<br>Technical feasibility uncertain                                                                                                                                                                                                                   |
| Social-managerial | Lack of adequate planning<br>Lack of trust between<br>stakeholders                                                                                                                                                                                                                                                      | Consumer concerns<br>Fear of change for core<br>business<br>Some stakeholders have<br>larger influence over the<br>project (power asymmetry)<br>Limited time to assess costs<br>and benefits                                                                                                                                                                                                                                                            |

This table is the 'group response' of the experts in the Delphi method. The group response is used in work package 2 where we further assess why certain barriers are considered less important. E.g. it is possible that the experts have already solved these barriers or maybe they are problematic in some projects and not in others.







# Section 3: Input for the R-ACES tools

The knowledge gained from previous H2020 projects will be used for the development of three tools: a self-assessment tool, a legal tool, and an energy management platform. Below, more detailed information is given on the three tools (table 2). The overview includes information on the foreseen target group, the applicable energy cooperation phase for which the tool seems mot suited, the purpose of the tool , and the used method.

Table 1: Scope of R-ACES tools

|                                | Self-assessment<br>tool                                                                                                                                                                                                                                                                                                                                       | Legal tool                                                                                                                                                                                                                                                                                                                                                               | Energy management platform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                    | A tool that helps eco-<br>regions to determine<br>the steps they have<br>to take in the energy<br>cooperation process.<br>The tool exists of a<br>number of questions<br>practitioners have to<br>answer. Based on<br>the answers, the<br>practitioners will get<br>a score and some<br>practical<br>considerations they<br>should take into<br>consideration | A tool that supports<br>practitioners by giving<br>the legal decision<br>support for joint<br>contracts. A low<br>threshold for usage is<br>a critical requirement.<br>The tool is self-<br>explanatory,<br>application oriented,<br>using well-defined and<br>clear terminology. The<br>tool should be able to<br>deal with a high<br>diversity of local<br>situations. | The energy management<br>platform is an ICT-tool that<br>makes energy flows transparent;<br>allows energy consumption and<br>production to be allocated to<br>specific installations,<br>stakeholders and nodes; and<br>identifies anomalies and<br>opportunities. A key feature is<br>that it is very easy to use for a<br>wide range of stakeholders. In<br>this way, it is possible to deploy it<br>in a cluster and give access to the<br>different company and cluster<br>managers – each at their level of<br>detail and with the information<br>they should have access to. On<br>the ecoregion level, there will be<br>a dashboard that shows different<br>energy flows. |
| Target<br>group                | Regional managers                                                                                                                                                                                                                                                                                                                                             | Legal staff                                                                                                                                                                                                                                                                                                                                                              | (Regional) energy managers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Energy<br>cooperation<br>phase | The tool can be used<br>for all energy<br>cooperation phases                                                                                                                                                                                                                                                                                                  | Implementation &<br>Operational                                                                                                                                                                                                                                                                                                                                          | The tool can be used in the exploration, implementation, and operational phase. During the exploration, historical data is used. The resulting dashboards are a powerful way to quickly discover the fruits of energy cooperation. In the course of the implementation and operational phase, the platform is coupled to sensors and used to follow which partner delivers energy, uses energy, and has to pay. In addition, the tool can be used to discover new potential energy projects.                                                                                                                                                                                     |
| Purpose                        | Giving insights in the steps to be taken in energy cooperation                                                                                                                                                                                                                                                                                                | The tool helps<br>practitioners to set up<br>the contracts<br>necessary to come to a<br>fruitful energy<br>cooperation                                                                                                                                                                                                                                                   | The purpose is to optimize energy flows and cut inefficiencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Method                         | Questions – Radar<br>chart                                                                                                                                                                                                                                                                                                                                    | Examples of contracts                                                                                                                                                                                                                                                                                                                                                    | Lean development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |





#### D1.2 Harmonized overview

|  | Support questions/<br>remarks for drafting a<br>contract |  |
|--|----------------------------------------------------------|--|
|--|----------------------------------------------------------|--|

As we gathered a lot of input for the three R-ACES tools within section 1, we will now couple this information to the three tools. In table 3, an overview is given of how each of the three tools can contribute to solve issues identified for each LESTS-category. The table should be interpreted as an input suggestion for the tools. This table symbolizes an important step forward in the creation of the three R-ACES tools. This journey will be continued in work package 2, where the requirements for the tools defined.

Table 2: Input from the literature for the R-ACES Tool Box: Some suggestions

|                   | Self-Assessment<br>Tool                                                                                                                                                                                                | Legal Tool                                                                                                                                                                                                                                                                                                                                   | Energy<br>Management<br>Platform (EMP)                                                                                                                                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legal             | The tool could give<br>advice to regional<br>managers on how they<br>can deal with barriers<br>regarding legislation,<br>permits & contracts.                                                                          | The tool will help the<br>legal staff with<br>drawing up contracts<br>with the various<br>relevant stakeholders.<br>This could be done by<br>providing examples of<br>contracts or by making<br>lists of issues that<br>should be taken into<br>account. Another issue<br>that could be covered<br>by the tool is<br>confidentiality issues. | During the<br>development process<br>the legal requirements<br>will be defined for the<br>EMP. This can be used<br>as input for the legal<br>tool. The legal tool can<br>in this way support the<br>EMP to reflect the legal<br>context/constraints of<br>an ecoregion. |
| Economic          | The tool could give<br>advice to regional<br>managers on how they<br>can deal with issues<br>regarding capital<br>available costs &<br>benefits, risks &<br>payback period.                                            | The tool could help the<br>legal staff to include<br>clauses about future<br>price development,<br>equal split of costs and<br>benefits & contractual<br>agreements for<br>sharing (energy) data.                                                                                                                                            | The EMP will give input<br>regarding the price<br>development. It<br>underpins the precise<br>insight offered to<br>energy managers and<br>highlights the impact<br>of energy costs.                                                                                    |
| Spatial           | The tool could give<br>advice to regional<br>managers on how they<br>can deal with barriers<br>regarding geographic<br>proximity, spatial<br>planning & Geographic<br>Information System.                              | -                                                                                                                                                                                                                                                                                                                                            | The EMP will provide a<br>way to gather data on<br>the amount of<br>available heat/ cooling<br>supply & demand.                                                                                                                                                         |
| Technical         | The tool could give<br>advice to regional<br>managers on how they<br>can deal with barriers<br>regarding existing<br>infrastructure, fitting<br>heating/ cooling<br>supply and demand &<br>readiness of<br>technology. | -                                                                                                                                                                                                                                                                                                                                            | The EMP will provide<br>an ICT infrastructure<br>that incorporates<br>inputs from different<br>installations and<br>meters. An added<br>benefit is in its helping<br>to assess the<br>state/functioning of<br>those installations.                                      |
| Social/Managerial | The tool could give<br>advice to regional<br>managers on how they<br>can deal with barriers<br>regarding culture/<br>priorities,<br>communication/                                                                     | -                                                                                                                                                                                                                                                                                                                                            | The EMP offers<br>transparency and<br>therefore engenders<br>the trust that is crucial<br>for actual energy<br>cooperation to take<br>place.                                                                                                                            |





| collaboration, ti | ime  | & |  |
|-------------------|------|---|--|
| available experti | ise. |   |  |





## Annex 1: Full list of selected reports

| Related project<br>or academic<br>study               | Focus area                                                                                                                                                                                                     | Selected<br>deliverables/<br>studies | Selected reports                                                                                                                                                                     |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>CE-HEAT</u><br>(Interreg)                          | Aims to improve the governance<br>of energy efficiency by focusing on<br>field of waste heat utilization in<br>Central Europe space and<br>through increased exploitation<br>of endogenous RES – waste<br>heat | 2                                    | <ol> <li>Brochure: Business case to energy sector</li> <li>Developing District Heating in North Western Europe</li> </ol>                                                            |
| <u>CoolHeating</u><br>(H2020)                         | Supports the <b>implementation of</b><br><b>small modular renewable</b><br><b>district heating and cooling</b><br>(DHC) grids in south-east Europe.                                                            | 6                                    | <ol> <li>Five reports on the framework conditions and policies in diverse<br/>European countries</li> <li>Guideline on drafting heat/cold supply contracts between actors</li> </ol> |
| District heating<br>Scotland<br>(Scottish<br>project) | aims to boost the uptake of <b>low</b><br>carbon heat technologies in<br>Scotland and focuses the efforts of<br>a number of agencies working in<br>this area                                                   | 1                                    | 1) JRC scientific and policy reports                                                                                                                                                 |
| ENTRAIN<br>(Interreg)                                 | Wants to encourage the adoption<br>of a <b>systematic and efficient</b><br><b>energy planning</b> able to reduce<br>the local carbon footprint                                                                 | 3                                    | <ol> <li>DELIVERABLE D.T1.2.2</li> <li>DELIVERABLE D.T1.2.1 Italy</li> <li>DELIVERABLE D.T1.2.1 Germany</li> </ol>                                                                   |
| EPOS<br>(SPIRE 2030)                                  | Barriers for industrial symbiosis implementation                                                                                                                                                               | 1                                    | 1)#Insight 11                                                                                                                                                                        |
| <u>Firece</u><br>(Interreg)                           | Plan territorially based <b>low-</b><br>carbon strategies in the frame<br>of Regional Energy plans                                                                                                             | 1                                    | 1) D.T.1.1.1-State-of-the-Art-Analysis                                                                                                                                               |
| FISSAC<br>(H2020)                                     | <b>Fostering industrial symbiosis</b><br>for a sustainable resource<br>intensive industry across the<br>extended construction value chain                                                                      | 1                                    | 1) D1.2 Best Practices                                                                                                                                                               |
| Flexynets<br>(H2020)                                  | Deploy a new generation of<br>intelligent DHC networks that                                                                                                                                                    | 2                                    | 1) D6.4<br>2) Guide book                                                                                                                                                             |



|                           | reduce energy transportation                                                                                                                                                                                         |   |                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------|
| Go ECO<br>(IEE)           | Apply a co-operative approach<br>to reduce energy consumption and<br>CO2 emissions in existing<br>business parks                                                                                                     | 1 | 1) Project summary                                                               |
| Heatnet NWE<br>(Interreg) | will address the challenge of<br>reducing CO2 emissions in North<br>West Europe by creating an<br>integrated transnational NWE<br>approach to the <b>supply of</b><br><b>renewable and low carbon</b><br><b>heat</b> | 1 | <ol> <li>A guide for energy companies</li> <li>Guide to finance 4 DHC</li> </ol> |
| <u>IN DEAL</u><br>(H2020) | Will offer an innovative platform<br>that will impose a fairly<br>distribution of heating and<br>cooling among the network's<br>buildings                                                                            | 1 | 1) Deliverable 3                                                                 |
| Magnitude                 |                                                                                                                                                                                                                      | 1 | 1) D 6.1 : KPIs and assessment procedure                                         |
| Maestri<br>(SPIRE)        | Aims to advance the sustainability<br>of European manufacturing and<br>process industries                                                                                                                            | 1 | 1) D1.1                                                                          |
| progRESsHEAT<br>(H2020)   | Supporting the progress of<br>renewable energies for heating<br>and cooling in the EU on a local<br>level                                                                                                            | 1 | 1) D 3.2 Barriers                                                                |
| RELaTED<br>(H2020)        | Will provide an innovative concept<br>of decentralized <b>Ultra-Low</b><br><b>Temperature (ULT) network</b><br>solution with substantial efficiency<br>and environmental benefits                                    | 2 | <ol> <li>Deliverable 2.3</li> <li>Deliverable 2.5</li> </ol>                     |
| REUSEHEAT<br>(H2020)      | Show case replicable models<br>enabling the recovery and<br>reuse of excess heat available<br>at urban level                                                                                                         | 1 | 1) Scientific publication (Lygnerud)                                             |
| RiConfigure<br>(H2020)    | By bringing different voices<br>together in new types of<br>collaborations we avoid blind spots                                                                                                                      | 1 | 1) Deliverable 6.5                                                               |





|                   | because every actor has specific         |   |                                                                                   |
|-------------------|------------------------------------------|---|-----------------------------------------------------------------------------------|
|                   | competences and focus points             |   |                                                                                   |
| <u>Scaler</u>     | To identify best practices and           | 3 | 1)T2.3 "Incentives Assessment"                                                    |
| (H2020)           | lessons learnt for scaling up            |   | 2)Deliverable 2.2                                                                 |
|                   | industrial symbiosis                     |   | 3)Deliverable 2.1                                                                 |
| Sirene            | Analysis of three Dutch cases of         | 1 | 1) Final report 2016 (confidential)                                               |
|                   | regional energy networks using           |   |                                                                                   |
|                   | semi-structured interviews and           |   |                                                                                   |
|                   | focus groups. With a focus on            |   |                                                                                   |
|                   | social-organizational barriers.          | 4 | 1) Final ware at 2016. Finder wart Customista watie to die ware Onen              |
| Sofie             | Investigation of the reasibility of      | 1 | 1) Final report 2016: Eindrapport Systeemintegratiestudie naar Open               |
|                   | local system integration to              |   |                                                                                   |
|                   | through social labo                      |   |                                                                                   |
| CO WILLAT         | Dovelop and demonstrate an               | 2 |                                                                                   |
| SOWHAT            | integrated software which will           | 2 | RECOVERY AND EXPLOITATION                                                         |
| (H2020)           | support industries and energy            |   | 2) Report-on-current-contractual-arrengement-for-for-WHC-exploitation             |
|                   | utilities in comparing alternative       |   |                                                                                   |
|                   | Waste Heat and Waste Cold                |   |                                                                                   |
|                   | exploitation technologies                |   |                                                                                   |
| S-PARCS           | Identify, summarize and cluster          | 2 | 1)Deliverable D1.2                                                                |
| (H2020)           | the manifold barriers associated         |   | 2)Barriers assigned to solutions inventory                                        |
| (112020)          | with various solutions of <b>energy</b>  |   |                                                                                   |
|                   | cooperation and mutualized               |   |                                                                                   |
|                   | energy services                          |   |                                                                                   |
| Stratego (IEE)    | Support local authorities in taking      | 1 | 1) Deliverable 3.D                                                                |
|                   | action so that they can help their       |   |                                                                                   |
|                   | national authorities in <b>preparing</b> |   |                                                                                   |
|                   | and developing NHCPs.                    |   |                                                                                   |
| <u>TEMPO</u>      | Crowdfunding as a financial              | 1 | 1) D6.4 Crowdfunding report                                                       |
| (H2020)           | tool for DHCs                            |   |                                                                                   |
| THERMOS           | accelerate the development of            | 2 | 1) Baseline Replication Assessment Report                                         |
| (H2020)           | new low-carbon heating and               |   | 2) Module 5                                                                       |
| (                 | cooling systems across Europe            |   |                                                                                   |
| <u>Upgrade DH</u> | Enabling the upgrading of                | 2 | 1) Handbook                                                                       |
|                   | district heating systems                 |   | 2) Best practice instruments and tools for diagnosing and retrofitting of         |
|                   |                                          |   | district heating networks                                                         |
| Academic          | Drivers and barriers of                  | 9 | 1) Bush, R.E. (2016). <i>Governing low carbon socio-technical transitions – a</i> |
|                   | industrial symbioses/                    |   | case study of district heating in Great Britain.                                  |
|                   | ecoregions.                              |   |                                                                                   |





| 2) Palm, J., Gustafsson S. (2018). Barriers to and enablers of district         |
|---------------------------------------------------------------------------------|
| cooling expansion in Sweden.                                                    |
| 3) Asfari, H., Farel, R., Peng, Q. (2018). Challenges of value creation in      |
| Eco-Industrial Parks (EIPs): A stakeholder perspective for optimizing energy    |
| exchanges.                                                                      |
| 4) Vansteenbrugge, J., Van Eetvelde, G. (n.d.). DISTRICT HEATING                |
| NETWORKS IN THE FRAMEWORK OF SPATIAL PLANNING                                   |
| 5) Busch, J., et al. (n.d.). Emergence of District-Heating                      |
| Networks: Barriers and Enablers in the Development Process.                     |
| 6) Meneghetti, A., Nardin, G. (2012), <i>Enabling industrial symbiosis by a</i> |
| facilities management optimization approach.                                    |
| 7) Bolton, R., Hannon, M. (2016) <i>Governing systemability</i>                 |
| transitions through husiness model innovation ' towards a systems               |
| understanding Research Policy ISSN 0048-7333                                    |
| http://dx.doi.org/10.1016/j.respol.2016.05.003                                  |
| 8) Bruck P. (2016) Pecommendations for a successful European IS                 |
| of black, R. (2010). Recommendations for a successful European 15               |
| 0) Ruch D.E. Bolo C.S.E. Toulor D.C. (2016) <i>Boolicing local government</i>   |
| 9) DUSH, K.E., Dale, C.S.E., Taylor, P.G. (2010). Realising local government    |
| Visions for developing district neating: Experiences from a learning country.   |



## Annex 2: Overview of barriers, solutions, KPIs, already existing tools, and R-ACES Tool

| Category<br>(Legal,<br>Economic,<br>Spatial,<br>Technical,<br>Social/<br>Managerial) | Topic<br>(Sub category<br>that is often<br>mentioned in<br>the literature) | Specific barrier<br>( <i>Description of specific barrier</i><br><i>as mentioned in the literature</i> )                                                                 | Solution<br>(Proposed solution in<br>the literature)                                                                                                                                                 | KPI<br>(KPI that is<br>suitable to<br>get more<br>insight in<br>barrier/<br>support the<br>given<br>solution) | Existing<br>tools<br>(Tools that<br>can help to<br>overcome<br>this<br>specific<br>barrier) | R-ACES Tool<br>(This barrier<br>will be<br>covered by<br>this specific<br>R-ACES tool) |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Legal                                                                                | (Knowledge of)<br>regulations<br>(29x)                                     | Complexity/ inconsistency of<br>regulations<br>(SCALER, 2017; In Deal, 2016; S-<br>PARCS, 2019; ProgRESsHEAT,<br>2015; FISSAC, 2015; RELATED,<br>2019, REUSEHEAT, 2017) | Special case exemptions<br>for pilot projects                                                                                                                                                        |                                                                                                               |                                                                                             | Self-<br>assessment<br>tool                                                            |
|                                                                                      |                                                                            | Cross border exchanges<br>(Arentsen, Klok & Bruck, 2016)                                                                                                                | Comprehensive European<br>Database                                                                                                                                                                   |                                                                                                               |                                                                                             | Self-<br>assessment<br>tool                                                            |
|                                                                                      |                                                                            | Legal uncertainty<br>(SCALER, 2017; In Deal, 2016; S-<br>PARCS, 2019; ProgRESsHEAT,<br>2015; FISSAC, 2015; RELATED,<br>2019, REUSEHEAT, 2017)                           | On country level: Stability<br>of legislation.<br>Funneling information<br>upwards and downwards<br>through regional<br>governments<br>Development of<br>stimulating models such as<br>EEIA in Italy |                                                                                                               |                                                                                             | Self-<br>assessment<br>tool                                                            |
|                                                                                      | Permits (4x)                                                               | Slow administration<br>(ENTRAIN, 2019; ProgRESsHEAT,<br>2015)                                                                                                           |                                                                                                                                                                                                      |                                                                                                               |                                                                                             | Self-<br>assessment<br>tool                                                            |
|                                                                                      |                                                                            | Unclear administrative framework<br>(EPOS, 2015; ProgRESsHEAT, 2015)                                                                                                    |                                                                                                                                                                                                      |                                                                                                               |                                                                                             | Self-<br>assessment<br>tool                                                            |





|          | Contracts (8x)             | Lack of standardized contracts<br>(THERMOS, 2016; So What, 2019,<br>RiConfigure, 2018; Busch et al.;<br>REUSEHEAT, 2017)    | Development of<br>standardized contracts.<br>Most important contract is<br>between owner of heat<br>and owner of DHC<br>network. Key aspects of<br>contract: shared<br>incentives, details of<br>supply, what resources are<br>needed for heat recovery,<br>communication channels,<br>operational activities,<br>renegotiation, mitigation,<br>maintenance periods/stops |                                                                                                                                                                             | Contract<br>examples                | Self-<br>assessment<br>tool<br>Legal tool |
|----------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|
|          |                            | DH requires a set of contracts with<br>different stakeholders<br>(UpGrade DH, 2018)                                         | Good overview on<br>contractual issues for small<br>DH systems is provided in<br>a guideline by Laurberg<br>Jensen et al. (2017)                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                     | Self-<br>assessment<br>tool<br>Legal tool |
|          |                            | Confidentiality issues in contracting (SCALER, 2017)                                                                        | Establish individual data<br>(safety) guidelines on<br>industrial park level                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                     | Self-<br>assessment<br>tool<br>Legal tool |
| Economic | Capital available<br>(27x) | DH is not core business: hard to<br>assign own funds<br>(S-PARCS, 2019; So What, 2019)                                      | Funding mechanisms to<br>support business<br>collaborations in resource<br>management                                                                                                                                                                                                                                                                                     | <ol> <li>Estimated</li> <li>Annual</li> <li>Electricity</li> <li>Savings</li> <li>Energy</li> <li>Conversion</li> <li>plant</li> <li>profitability</li> </ol>               | <u>Business</u><br><u>plan tool</u> | Self-<br>assessment<br>tool               |
|          |                            | Existing plants are not depreciated<br>today, which hampers the<br>investment in new ones<br>(S-PARCS, 2019; In Deal; 2016) | Important role for local<br>government: can think<br>beyond commercial<br>approaches. Integration of<br>different kinds of values:<br>reduction of fuel poverty,<br>local economic growth,<br>and carbon reduction                                                                                                                                                        | <ol> <li>Fuel poverty<br/>reduction</li> <li>GHG<br/>emission<br/>reduction</li> <li>Energy</li> <li>Energy</li> <li>Efficiency</li> <li>Share of<br/>electrical</li> </ol> | <u>Business</u><br><u>plan tool</u> | Self-<br>assessment<br>tool               |





|  |                           |                                                                                                                                                                      | On country level: Policy<br>can influence this issue by<br>setting or changing<br>requirements for the<br>energy system                                                                                                                                                                                              | energy<br>produced by<br>renewable<br>energy sources<br>5) City/<br>region's<br>unemployment<br>rate |                              |                                           |
|--|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|
|  |                           | Limited access to external capital<br>(THERMOS, 2016; So What, 2019;<br>ENTRAIN, 2019; FISSAC, 2015;<br>Firece; 2017; EPOS, 2015; TEMPO,<br>2018)                    | The right investor, e.g.<br>local authorities and<br>national governments;<br>Crowdfunding campaign<br>focused on 'patient' capital                                                                                                                                                                                  |                                                                                                      | <u>Business</u><br>plan tool | Self-<br>assessment<br>tool               |
|  | Costs & Benefits<br>(49x) | Uncertainty about price<br>development<br>(RELaTED, 2019; S-PARCS, 2019;<br>So What, 2019)                                                                           | Smart billing<br>If the value of heat/cold is<br>linked to seasonal<br>demand, it should be<br>accounted for in the<br>contract. To manage heat<br>extraction during summer,<br>it can be written into the<br>contract that the heat<br>receiver must receive at<br>least a fixed amount of<br>heat all year around. |                                                                                                      | <u>EnergyPRO</u>             | Self-<br>assessment<br>tool<br>Legal tool |
|  |                           | Competition with other alternatives<br>(f.e. low electricity prices)<br>(ENTRAIN, 2019; SCALER, 2017;<br>ENTRAIN, 2019; In Deal, 2016;<br>Bush, Bale & Taylor, 2016) | Important role for local<br>government: can think<br>beyond commercial<br>approaches. Integration of<br>different kinds of values:<br>Reduction of fuel poverty,<br>local economic growth and<br>carbon reduction<br>Country level solution:<br>CO2 taxation on fossil<br>fuels                                      | 1) Return on<br>investment                                                                           | <u>Business</u><br>plan tool | Self-<br>assessment<br>tool               |
|  |                           | Energy costs are not considered to<br>be a crucial factor<br>(S-PARCS, 2019)                                                                                         | Energy management at<br>park level/ Common<br>energy audits/ Smart<br>monitoring systems for<br>energy facilities and                                                                                                                                                                                                | 1) Estimated<br>Annual<br>Electricity<br>Savings                                                     |                              | Energy<br>management<br>platform          |





|     |           |                                                                                                                                                | plants/ Digital<br>transformation of energy<br>data                                                                                                                                                         | 2) Energy<br>conversion<br>plant<br>profitability                                                                                                                                                                                                                |                                                                                                        |                                           |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|
|     | -         | The party who bears the initial costs<br>might not benefit at all from the<br>savings<br>(Paul & Gustofsson, 2018;<br>ProgRESsHEAT, 2015)      | The optimization problem<br>should be extended to<br>include the required<br>investments and operation<br>costs as well as expected<br>gains for each stakeholder<br>and provide a cost-benefit<br>analysis | 1) Analysis of<br>cost and<br>revenues of<br>the service per<br>actor with<br>network<br>constraints                                                                                                                                                             | <u>Business</u><br>plan tool                                                                           | Legal tool<br>Self-<br>assessment<br>tool |
|     |           | High investment costs<br>(S-PARCS, 2019; In Deal, 2016; So<br>What, 2019; UpGrade DH, 2018;<br>Paul & Gustafsson, 2018;<br>ProgRESsHEAT, 2015) | Leasing<br>Energy management<br>system at park level                                                                                                                                                        | 1) Return on<br>investment<br>2) Payback<br>time                                                                                                                                                                                                                 | <u>Business</u><br>plan tool                                                                           | Self-<br>assessment<br>tool               |
| Ris | sks (19x) | Fear of security of supply<br>(S-PARCS, 2019)                                                                                                  |                                                                                                                                                                                                             | <ol> <li>1) Operational<br/>failure risk</li> <li>2) System<br/>average<br/>interruption<br/>frequency<br/>index</li> <li>3) System<br/>average<br/>interruption<br/>duration index</li> <li>4) Dependency<br/>of system on<br/>certain<br/>suppliers</li> </ol> |                                                                                                        | Self-<br>assessment<br>tool               |
|     |           | Concerns about long term viability<br>of DH<br>(Bush, Bale & Taylor, 2016)                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  | Economic<br>calculation<br>tool for small<br>modular<br>district<br>heating and<br>cooling<br>projects | Self-<br>assessment<br>tool               |





## D1.2 Harmonized overview

|         |                                          | Lock-in of selected technology<br>(SIRENE, 2016; S-PARCS, 2019)                                                                          | Modular systems                                                                                                                                                   |                                                                                                                                               |                                            | Self-<br>assessment<br>tool               |
|---------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
|         |                                          | Fear of hidden costs<br>(S-PARCS, 2019)                                                                                                  | Leasing for energy efficient<br>equipment/ Raising<br>awareness and training<br>activities                                                                        | 1) Operational<br>failure risk                                                                                                                |                                            | Self-<br>assessment<br>tool               |
|         |                                          | Fear of competitive disadvantages<br>through exchange of information,<br>knowledge and data<br>(S-PARCS, 2019)                           | Contractual agreements for sharing energy data                                                                                                                    | 1) Estimated<br>Annual<br>Electricity<br>Savings                                                                                              |                                            | Self-<br>assessment<br>tool<br>Legal tool |
|         | Payback period<br>(8x)                   | High CAPEX and low OPEX<br>(TEMPO, 2018)                                                                                                 | The right investor, e.g.<br>local authorities and<br>national governments;<br>Crowdfunding campaign<br>focused on 'patient' capital<br>Energy Saving certificates | <ol> <li>Payback<br/>period</li> <li>Returns on<br/>investment</li> <li>Market price<br/>of provided<br/>energy &amp;<br/>services</li> </ol> | <u>EnergyPRO</u>                           | Self-<br>assessment<br>tool               |
|         |                                          | Payback period is too long for<br>private investors<br>(ENTRAIN, 2019; So WHAT, 2019;<br>REUSEHEAT, 2017; EPOS, 2015; S-<br>PARCS, 2019) | Involvement of<br>governmental<br>organizations that invest in<br>DHC                                                                                             | <ol> <li>Payback<br/>period</li> <li>Returns on<br/>investment</li> </ol>                                                                     | EnergyPRO                                  | Self-<br>assessment<br>tool               |
|         |                                          | Complexity of calculation of return<br>of investments<br>(SCALER, 2017)                                                                  |                                                                                                                                                                   |                                                                                                                                               | <u>EnergyPRO</u>                           | Self-<br>assessment<br>tool               |
| Spatial | Geographic<br>proximity (6x)             | Long physical distances between<br>enterprises<br>(S-PARCS, 2019; ProgRESsHEAT,<br>2015; So What, 2019; SCALER,<br>2017)                 | Heat mapping: Heat<br>potential study to<br>determine future dh areas                                                                                             | <ol> <li>On site heat<br/>ratio</li> <li>Relative<br/>importance of<br/>losses</li> </ol>                                                     | THERMOS<br>Software                        | Self-<br>assessment<br>tool               |
|         | Spatial planning<br>(5x)                 | Lack of required infrastructure in the<br>direct environment (f.e. district<br>heating network)<br>(RELaTED, 2019; SCALER, 2017)         |                                                                                                                                                                   | 1) Distance to<br>nearest<br>existing DHC<br>network                                                                                          |                                            | Self-<br>assessment<br>tool               |
|         | Geographic<br>Information<br>System (1x) | Lack of data for heat mapping<br>(Bush, 2016)                                                                                            | Planes can help to get<br>better insights in amount<br>of heat available (see<br>tools)                                                                           | -                                                                                                                                             | <u>Thermal</u><br>imaging via<br>air plane | Self-<br>assessment<br>tool               |





|           |                                                          |                                                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                | THERMOS<br>Software                                 | Energy<br>Management<br>Platform                                |
|-----------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|
| Technical | Existing<br>infrastructure<br>(4x)                       | Outdated infrastructure<br>(S-PARCS, 2019; So What, 2019)                                    | Maintenance                                                                                                       | <ol> <li>1) Energy         <ol> <li>losses in</li> <li>kWh/year</li> <li>System</li> <li>average</li> <li>interruption</li> <li>duration index</li> <li>System</li> <li>average</li> <li>interruption</li> <li>frequency</li> <li>index</li> </ol> </li> </ol> | <u>Thermal</u><br>imaging via<br>air plane          | Self-<br>assessment<br>tool<br>Energy<br>management<br>platform |
|           |                                                          | Lack of infrastructure<br>(S-PARCS, 2019; EPOS, 2015)                                        | ESCO management<br>Local governmental plans                                                                       |                                                                                                                                                                                                                                                                |                                                     | Self-<br>assessment<br>tool                                     |
|           |                                                          | ICT infrastructure: advanced<br>communication infrastructure is<br>needed<br>(S-PARCS, 2019) | ICT sector engagement                                                                                             |                                                                                                                                                                                                                                                                |                                                     | Self-<br>assessment<br>tool<br>Energy<br>Management<br>Platform |
|           | Fitting<br>heating/cooling<br>supply and<br>demand (12x) | Most potentials have already been<br>realized<br>(S-PARCS, 2019)                             | Continuous improvement<br>of energy management<br>Engaging symbiosis with<br>non-park entities                    | <ol> <li>1) Energy<br/>losses in<br/>kWh/year</li> <li>2) System<br/>average<br/>interruption<br/>duration index</li> <li>3) System<br/>average<br/>interruption<br/>frequency<br/>index</li> </ol>                                                            | <u>Heat</u><br><u>Solution™</u><br><u>by ENFOR™</u> | Self-<br>assessment<br>tool                                     |
|           |                                                          | Quantity of heat/cooling<br>demand/supply does not fit<br>(RELaTED, 2019; S-PARCS, 2019)     | More complicated<br>installations<br>Use of more advanced<br>DHC networks to be able<br>to cover longer distances | <ol> <li>Maximum<br/>hourly surplus<br/>deficit</li> <li>Availability<br/>factor</li> </ol>                                                                                                                                                                    | <u>Waste heat</u><br>potential                      | Self-<br>assessment<br>tool                                     |





|                       |                                     | Quality of heat/cooling<br>demand/supply does not fit (f.e.<br>temperature level, continuity profile)<br>(S-PARCS, 2019; REUSEHEAT,<br>2017; Arentsen, Klok & Bruck,<br>2016; SCALER, 2017) | More complicated<br>installations<br>Presence of storage<br>facilities for resource<br>flexibility<br>In case of low temperature<br>waste heat: create direct<br>recovery incentives. Have<br>long-term guarantees<br>regarding future volumes<br>(preferably in long-term<br>contracts) of heat to<br>increase the predictability,<br>and thus reduce the risk of<br>the investment. | <ol> <li>Losses</li> <li>because of</li> <li>heat/ cooling</li> <li>storage</li> <li>solutions</li> <li>Relative</li> <li>importance of</li> <li>losses</li> <li>Availability</li> <li>factor</li> </ol>      | <u>Waste heat</u><br>potential | Self-<br>assessment<br>tool |
|-----------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|
|                       | Readiness of<br>technology<br>(13x) | Lack of knowledge about successful<br>demonstration projects and / or<br>references<br>(S-PARCS, 2019)                                                                                      | Technical and engineering<br>consultancy<br>Promoting training<br>activities among<br>professionals<br>Machine manufactures'<br>engagement<br>Increasing investments in<br>R&D                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                | Self-<br>assessment<br>tool |
|                       |                                     | Technical feasibility<br>(S-PARCS, 2019; FISSAC, 2015;<br>REUSEHEAT; 2017; EPOS, 2015)                                                                                                      | R&D to detect technical<br>challenges early on in the<br>project, provide solutions.<br>Trials are important. Data<br>& indicators                                                                                                                                                                                                                                                    |                                                                                                                                                                                                               | THERMOS<br>Software            | Self-<br>assessment<br>tool |
| Social/<br>Managerial | Culture/<br>priorities (39x)        | Community acceptance – consumer<br>concerns<br>(EPOS, 2015; UpGrade DH, 2018;<br>ENTRAIN, 2019; CE-HEAT, 2016;<br>TEMPO, 2018; THERMOS, 2016; In<br>Deal, 2016)                             | Communication is key:<br>inform local communities<br>Create awareness on time.<br>Use a DHC ambassador,<br>info-events. Once a<br>network is running:<br>regularly inform<br>consumers. Set up a<br>complaint procedure. For<br>corporate actors: use<br>personal approach                                                                                                            | <ol> <li>Thermal<br/>comfort</li> <li>Improved<br/>access to<br/>online services</li> <li>Public<br/>safety</li> <li>Degree of<br/>users'<br/>satisfaction</li> <li>Reduction of<br/>the number of</li> </ol> |                                | Self-<br>assessment<br>tool |





## D1.2 Harmonized overview

|                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                | communication<br>channels                                      |             |                             |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-----------------------------|
|                                          | Fear of distortions to core business<br>(S-PARCS, 2019; SCALER, 2017)                                                     | Environmental and energy<br>awareness campaign<br>starting at<br>company/department<br>level, possibility also<br>leveraging<br>park/consortium/ category<br>bodies<br>Step-by-step approach,<br>energy cooperation<br>starting from non-critical<br>processes<br>Health and safety analysis<br>Energy cooperation on top<br>of existing utilities in order<br>to guarantee a backup<br>system |                                                                |             | Self-<br>assessment<br>tool |
|                                          | Companies are direct market<br>competitors – no interest in<br>cooperation<br>(S-PARCS, 2019)                             | Energy cooperation on<br>non-product related<br>processes and focus on<br>mutual/equal benefit<br>solutions<br>Ideation/ co-creation<br>workshops with expert<br>facilitation<br>Intermediaries help<br>identify synergies,<br>opportunities and<br>technological needs                                                                                                                        | Number of<br>direct<br>competitors<br>around in the<br>network |             | Self-<br>assessment<br>tool |
|                                          | Business as usual paradigm in which<br>heat is seen as a waste material<br>(S-PARCS, 2019; SCALER, 2017)                  | Step-by-step approach,<br>starting from easy to<br>implement measures<br>Incorporation of human<br>drivers with high<br>leadership capacity                                                                                                                                                                                                                                                    |                                                                |             | Self-<br>assessment<br>tool |
| Communication/<br>Collaboration<br>(81x) | Lack of coordination<br>(SCALER, 2017; Bush, 2016;<br>Arentsen, Klok & Bruck, 2016; Bush,<br>Bale & Taylor, 2016, SIRENE) | External intermediaries<br>with a coordination role; or<br>self-organizational<br>approach                                                                                                                                                                                                                                                                                                     |                                                                | Esteem tool | Self-<br>assessment<br>tool |





|                                                                                                                                                                                                                                              | Intermediaries/ knowledge<br>brokers/ coordinating<br>bodies<br>Appointment of energy<br>manager                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |                                          |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|
| Lack of trust between stakeholders<br>(SCALER, 2017; S-PARCS, 2019;<br>Busch et al., n.d.; SIRENE)                                                                                                                                           | Meetings at park level to<br>promote communication<br>and collaboration between<br>companies/ Energy<br>cooperation starting at<br>demo level (small scale)/<br>External entities<br>(consultants, public<br>authorities, manufacturer<br>organizations, etc.) to<br>facilitate and promote<br>cooperative measures<br>Construction of learning<br>networks and forums to<br>form enduring<br>relationships |                                                                                                                                                                                 | Esteem tool<br>Oxfam Novib<br>trust tool | Self-<br>assessment<br>tool |
| Lack of relevant information<br>(Go ECO, 2013; FISSAC, 2015;<br>SCALER, 2017; SIRENE)                                                                                                                                                        | Best practices:<br>Stakeholder dialogue,<br>training of the personnel<br>involved, raising<br>awareness<br>A result of lack of energy<br>management systems as<br>well as energy monitoring<br>tools in general                                                                                                                                                                                             | 1) List with<br>information<br>that is still<br>missing/ not<br>up to date                                                                                                      | <u>EnergyPRO</u>                         | Self-<br>assessment<br>tool |
| Involvement of a wide range of<br><competing> stakeholders (early on<br/>in the process) with potential power<br/>asymmetry<br/>(SCALER, 2017; Stratego, 2013;<br/>ProgRESsHEAT, 2015; Menegheti &amp;<br/>Nardin, 2012, SIRENE)</competing> | An early involvement of a<br>wider range of<br>stakeholders smoothens<br>the path for the<br>implementation of projects<br>Networks of companies<br>have proved effective<br>Participation process                                                                                                                                                                                                          | <ol> <li>Share of<br/>relevant</li> <li>stakeholders</li> <li>involved in the<br/>process</li> <li>Power</li> <li>differences</li> <li>between</li> <li>stakeholders</li> </ol> | Esteem tool                              | Self-<br>assessment<br>tool |





|                              |                                                                                                                           | Participants reflect and<br>represent the complete<br>stakeholder field<br>Short mental distance<br>assures convergence of<br>goals and visions                                                                                                                                                               |             |                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|
| Time (5x)                    | Lack of adequate planning<br>(In Deal, 2016)                                                                              | ESCO management                                                                                                                                                                                                                                                                                               | Esteem tool | Self-<br>assessment<br>tool |
|                              | Limited time to assess costs and<br>benefits of the project<br>(Stratego, 2013)                                           | Stratego's list of categories gives good guidance                                                                                                                                                                                                                                                             |             | Self-<br>assessment<br>tool |
|                              | Lack of time and resources invested<br>by key stakeholders (f.e. local<br>authorities)<br>(Bush, 2016; S-PARCS, 2019)     | One solution was to<br>establish activities at the<br>regional authority level,<br>such as the local<br>enterprise partnership. The<br>pooling of resources at this<br>stage enabled work to be<br>undertaken on behalf of<br>local authorities that could<br>not have been able to take<br>place otherwise   |             | Self-<br>assessment<br>tool |
| Available<br>expertise (21x) | Lack of knowledge about financial<br>matters<br>(S-PARCS, 2019; Asfari et al., 2018;<br>TEMPO, 2018; SCALER, 2017)        |                                                                                                                                                                                                                                                                                                               |             | Self-<br>assessment<br>tool |
|                              | Lack of knowledge and/ or skills<br>related to DHC<br>(S-PARCS, 2019; Bush, 2016;<br>SCALER, 2017; ProgRESsHEAT,<br>2015) | Appointment of energy<br>manager<br>Create solid knowledge<br>base in your own project<br>management team. Peer<br>networks to enable<br>knowledge sharing<br>Role of intermediary<br>activities<br>Involvement of knowledge<br>agents (universities,<br>specialist, consultancies)<br>Energy advice services |             | Self-<br>assessment<br>tool |





| Lack of knowledge on le | egal matters | Self-              |
|-------------------------|--------------|--------------------|
|                         |              | assessment<br>tool |





## **Annex 3: Questions**

9/15/2020

R-ACES screening: barriers for energy exchange

## R-ACES screening: barriers for energy exchange

The R-ACES project is an initiative promoted by 8 partners from 6 European countries, with the vision to support high-potential industry parks and clusters to become fully-fledged ecoregions that reduce emissions by at least 10%. An ecoregion is a geographic area where energy and information exchanges occur between various companies and actors to reduce waste and energy consumption. Ecoregion can be centered on an (eco-)industrial park or (eco-) business park, linked to its surroundings by a 4th/5th generation district heating/cooling network.

R-Aces aims to condense the knowledge and experience gathered throughout EU and national projects into a set of three focused tools: a self-assessment tool, a legal tool, and a smart energy management platform. A list of hundreds of barriers and solutions was identified from research projects on energy exchange (e.g. H2020, Interreg NWE, and other research programs). As a first step of our research, we have attempted to group barriers that are similar, giving us a shorter list to work with.

The list currently consists of 49 barriers. For our self-assessment tool, we would like to focus on the most important and relevant barriers and their solutions. For that, we hope that you can help us by filling in this questionnaire. It will take about 5-10 minutes of your time. We will treat the results anonymously. In the end of the questionnaire we would also like to ask you if you would consider doing a video call with us in which we can discuss the barriers and solutions you have selected more in depth.

We thank you for your time and participation,

Max Brouwer and Christa de Ruyter, ISPT \* Required

1. What kind of experience do you have with energy cooperation? \*

Mark only one oval.

- Project management
- Engineering
- Research
- Policy making
- Other:



#### 9/15/2020

#### R-ACES screening: barriers for energy exchange

 Within energy cooperation projects, I have expertise with the following categories of barriers. Please tick the boxes that apply.\*

Check all that apply.

- Legal barriers
- Economic barriers
- Spatial barriers
- Technical barriers
- Social/Managerial barriers
- None of the above
- (1/5) From the list below, please select the legal barriers that you recognize and consider important to the success of energy exchange. \*

Check all that apply.

| Complexity of regulations                                               |
|-------------------------------------------------------------------------|
| Conflicting regulation for cross-border exchange                        |
| Uncertainty about developments of legislation                           |
| Slow administration of permits                                          |
| Unclear administrative framework of permits                             |
| Lack of standardized contracts (e.g. heat purchase / supply agreements) |
| Complexity of multi-stakeholder partnership contracting                 |
| Confidentiality issues in contracting                                   |

4. Can you share us a best practice to deal with legal barriers?

https://docs.google.com/forms/d/1hfsVbxSK/fh936v7\_8G1n8uPPSe\_m1zQS0Bfyd7Q0LWw/edit



9/15/2020

#### R-ACES screening: barriers for energy exchange

 (2/5) From the list below, please select the economic barriers that you recognize and consider important to the success of energy exchange. \*

Check all that apply.

- Energy exchange is not core business
- Existing plants are not correctly depreciated
- Limited access to external capital
- Uncertainty about price development (e.g. of heat due to seasonal demand)

Competition with alternative energy carriers (e.g. fossil, electricity)

- Energy costs are not considered in the plant/business park
- Cost/benefit asymmetry: The party making the costs is not always the party receiving

#### the benefits

- High capital investment costs
- Fear of security of supply
- Concerns about long-term viability of district heating
- Lock-in of selected technology
- Fear of hidden cost
- Fear of competitive disadvantages from sharing information and data
- High CAPEX and low OPEX
- Payback period is too long for private investors
- Complexity of calculation of return on investments
- 6. Can you share us a best practice to deal with economic barriers?

 (3/5) From the list below, please select the spatial barriers that you recognize and consider important to the success of energy exchange. \*

Check all that apply.

Long physical distances between enterprises

- Lack of existing infrastructure in direct environment
- Lack of data for heat mapping

https://docs.google.com/forms/d/1hfsVhxSK/h936v7\_8G1n8uPPSe\_m1zQS0Bfyd7Q0LWw/edit





| 9/15/2020 | R-ACES screening: barriers for energy exchange                                                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.        | Can you share us a best practice to deal with spatial barriers?                                                                                   |
|           |                                                                                                                                                   |
|           |                                                                                                                                                   |
|           |                                                                                                                                                   |
|           |                                                                                                                                                   |
|           |                                                                                                                                                   |
| 9.        | (4/5) From the list below, please select the technical barriers that you recognize<br>and consider important to the success of energy exchange. * |
|           | Check all that apply.                                                                                                                             |
|           | Outdated existing infrastructure                                                                                                                  |
|           | Advanced ICT infrastructure is required                                                                                                           |
|           | Most potentials have already been realized                                                                                                        |
|           | Heating & cooling supply quantity does not match demand                                                                                           |
|           | Quality of neating & cooling (e.g. temperature) supply does not match demand                                                                      |
|           | Technical feasibility uncertain                                                                                                                   |

10. Can you share us a best practice to deal with technical barriers?

https://docs.google.com/forms/d/1hfsVixSKfh936v7\_8G1n8uPPSe\_m1zQS0Bfyd7Q0LWw/edit

40



| Λ | 1 |
|---|---|
| + | Ŧ |

#### 9/15/2020

#### R-ACES screening: barriers for energy exchange

(5/5) From the list below, please select the social-managerial barriers that you
recognize and consider important to the success of energy exchange. \*

Check all that apply.

| Consumer concerns                                                          |
|----------------------------------------------------------------------------|
| Fear of change for core business                                           |
| No interest in cooperation with direct market competitors                  |
| Heat is seen as a waste product                                            |
| Lack of project coordination                                               |
| Lack of trust between stakeholders                                         |
| Lack of information on energy flows                                        |
| Some stakeholders have larger influence over the project (power asymmetry) |
| Lack of adequate planning                                                  |
| Limited time to assess costs and benefits of the project                   |
| Lack of time and resources invested by key stakeholders                    |
| Lack of financial knowledge                                                |
| Lack of knowledge and / or skills related to district heating and cooling  |
| Lack of legal knowledge                                                    |
|                                                                            |

12. Can you share us a best practice to deal with social-managerial barriers?

 Would you be willing to participate in a 1-on-1 video call with us to discuss the topic further? If so, please share your e-mail adres below.

This content is neither created nor endorsed by Google.

#### Google Forms

https://docs.google.com/forms/d/1hfsVixSK/n936v7\_8G1n8uPPSe\_m1zQS0Biyd7Q0LWw/edt

